A canonical Hamiltonian analysis of Podolsky’s generalized electrodynamics in first-order formalism

2021 ◽  
Vol 36 (10) ◽  
pp. 2150068
Author(s):  
Jialiang Dai

We give a canonical Hamiltonian analysis of Podolsky’s generalized electrodynamics by introducing two sets of new variables which help us transform the Lagrangian into an equivalent first-order formalism. After eliminating the unphysical sector, we calculate the physical degrees of freedom of the higher derivative system and obtain the Dirac brackets in the reduced phase space. Then with the aid of the first-class constraints, we construct the independent gauge generator which is closely connected with the BRST charge and the BRST-invariant Hamiltonian. Finally, by choosing appropriate gauge-fixing fermion, we evaluate the path integral of this higher derivative constrained system in BRST quantization scheme with the generalized Lorenz gauge condition.

Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 143 ◽  
Author(s):  
Daniel Blixt ◽  
Manuel Hohmann ◽  
Christian Pfeifer

The covariant formulation of teleparallel gravity theories must include the spin connection, which has 6 degrees of freedom. One can, however, always choose a gauge such that the spin connection is put to zero. In principle this gauge may affect counting of degrees of freedom in the Hamiltonian analysis. We show for general teleparallel theories of gravity, that fixing the gauge such that the spin connection vanishes in fact does not affect the counting of degrees of freedom. This manifests in the fact that the momenta of the Lorentz transformations which generate the spin connection are fully determined by the momenta of the tetrads.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750092 ◽  
Author(s):  
I. Y. Park

The quantization scheme based on reduction of the physical states I. Y. Park, Hypersurface foliation approach to renormalization of ADM formulation of gravity, Eur. Phys. J. C 75(9) (2015) 459, arXiv:1404.5066 [hep-th] is extended to two gravity-matter systems and pure de Sitter (dS) gravity. For the gravity-matter systems, we focus on quantization in a flat background for simplicity, and renormalizability is established through gauge-fixing of matter degrees of freedom. Quantization of pure dS gravity has several new novel features. It is noted that the infrared divergence does not arise in the present scheme of quantization. The lapse function constraint plays a crucial role.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1519
Author(s):  
Mikulas Huba ◽  
Pavol Bistak ◽  
Damir Vrancic ◽  
Katarina Zakova

The article reviews the results of a number of recent papers dealing with the revision of the simplest approaches to the control of first-order time-delayed systems. The concise introductory review is extended by an analysis of two discrete-time approaches to dead-time compensation control of stable, integrating, and unstable first-order dead-time processes including simple diagnostics of the model used and focusing on the possibility of simplified but reliable plant modelling. The first approach, based on the first historically known dead-time compensator (DTC) with possible dead-beat performance, is based on the reconstruction of the actual process variables and the compensation of input disturbances by an extended state observer (ESO). Such solutions play an important role both in a disturbance observer (DOB) based control and in an active disturbance rejection control (ADRC). The second approach considered comes from the Smith predictor with two degrees of freedom, which combines feedforward control with output disturbance reconstruction and compensation by the parallel plant model. It is shown that these two approaches offer advantageous properties in the case of actuator limitations, in contrast to the commonly used PID controllers. However, when applied to integrating and unstable first-order systems, the unconstrained and possibly unobservable output disturbance signal of the second solution must be eliminated from the control loop, due to the hidden structural instability of the Smith predictor-like solutions. The modified solutions, usually referred to as filtered Smith predictor (FSP), then no longer provide a disturbance signal and thus no longer fully fit into the concept of Industry 4.0, which is focused on further optimization, predictive maintenance in dynamic systems, diagnosis, fault detection and fault identification of dynamic processes and forms the basis for the digitalization of smart production. Nevertheless, the detailed analysis of the elimination of the unstable disturbance response mode is also worth mentioning in terms of other possible solutions. The application of both approaches to the control of a thermal process shows almost equivalent quality, but with different dependencies on the tuning parameters used. It is confirmed that a more detailed identification of the controlled process and the resulting higher complexity of the control algorithms does not necessarily lead to an increase in the resulting quality of the transients, which underlines the importance of the simplified plant modelling for practice.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Kirill Krasnov ◽  
Yuri Shtanov

Abstract We describe a new perturbation theory for General Relativity, with the chiral first-order Einstein-Cartan action as the starting point. Our main result is a new gauge-fixing procedure that eliminates the connection-to-connection propagator. All other known first-order formalisms have this propagator non-zero, which significantly increases the combinatorial complexity of any perturbative calculation. In contrast, in the absence of the connection-to-connection propagator, our formalism leads to an effective description in which only the metric (or tetrad) propagates, there are only cubic and quartic vertices, but some vertex legs are special in that they cannot be connected by the propagator. The new formalism is the gravity analog of the well-known and powerful chiral description of Yang-Mills theory.


Author(s):  
Bappaditya Banerjee ◽  
Anil K. Bajaj

Abstract Dynamical systems with two degrees-of-freedom, with quadratic nonlinearities and parametric excitations are studied in this analysis. The 1:2 superharmonic internal resonance case is analyzed. The method of harmonic balance is used to obtain a set of four first-order amplitude equations that govern the dynamics of the first-order approximation of the response. An analytical technique, based on Melnikov’s method is used to predict the parameter range for which chaotic dynamics exist in the undamped averaged system. Numerical studies show that chaotic responses are quite common in these quadratic systems and chaotic responses occur even in presence of damping.


1932 ◽  
Vol 6 (4) ◽  
pp. 417-427 ◽  
Author(s):  
C. C. Coffin

The gaseous decompositions of the esters butylidene diacetate and ethylidene dipropionate have been studied from points of view previously outlined in papers on the decomposition of ethylidene diacetate (2, 3). The decomposition velocities have been measured at initial pressures of from 5 to 56 cm. of mercury and at temperatures between 211 and 265 °C. The reactions are homogeneous and of the first order. They agree with the Arrhenius equation and give 100% yields (within experimental error) of an aldehyde and an anhydride. The preparation of the compounds and improvements in the technique of the velocity measurements are described.While the specific velocities of the three reactions at any temperature are somewhat different, their activation energies are the same. It is suggested that in the case of such simple reactions, which are strictly localized within the molecular structure, the activation energy can be identified as the maximum energy that the reactive bonds may possess and still exist; i.e., it may be taken as a measure of the stability of the bonds which are broken in the reaction. The suggestion is also made that for a series of reactions which have the same activation energy, the specific velocities can be taken as a relative measure of the number of internal degrees of freedom that contribute to the energy of activation. On the basis of these assumptions it becomes possible to use reaction-velocity measurements for the investigation of intramolecular energy exchange. The theoretical significance of the data is further discussed and the scope of future work in this connection is indicated.The monomolecular velocity constants (sec−1) of the decomposition of ethylidene diacetate, ethylidene dipropionate and butylidene diacetate are given respectively by the equations [Formula: see text], [Formula: see text], and [Formula: see text].


1999 ◽  
Vol 14 (06) ◽  
pp. 447-457 ◽  
Author(s):  
JOSE A. MAGPANTAY

Using the recently proposed nonlinear gauge condition [Formula: see text] we show the area law behavior of the Wilson loop and the linear dependence of the instantaneous gluon propagator. The field configurations responsible for confinement are those in the nonlinear sector of the gauge-fixing condition (the linear sector being the Coulomb gauge). The nonlinear sector is actually composed of "Gribov horizons" on the parallel surfaces ∂ · Aa=fa≠0. In this sector, the gauge field [Formula: see text] can be expressed in terms of fa and a new vector field [Formula: see text]. The effective dynamics of fa suggests nonperturbative effects. This was confirmed by showing that all spherically symmetric (in 4-D Euclidean) fa(x) are classical solutions and averaging these solutions using a Gaussian distribution (thereby treating these fields as random) lead to confinement. In essence the confinement mechanism is not quantum mechanical in nature but simply a statistical treatment of classical spherically symmetric fields on the "horizons" of ∂ · Aa=fa(x) surfaces.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Sudhaker Upadhyay ◽  
Bhabani Prasad Mandal

AbstractWe provide a BRST formalism for the soft-collinear effective theory describing interactions of soft and collinear degrees of freedom in the presence of a hard interaction. In particular, we develop a BRST symmetry transformation for SCET theory. We further generalize the BRST formulation by making the transformation parameter field dependent. This establishes a mapping between several SCET actions consistently when defined in different gauge conditions. In fact, a definite structure of gauge-fixed actions corresponding to any particular gauge condition can be generated for SCET theory using our formulation.


1982 ◽  
Vol 26 (01) ◽  
pp. 38-44
Author(s):  
James H. Duncan ◽  
Clinton E. Brown

A computational procedure is developed using first-order hydrodynamic theory to predict the motions and power absorption from arrays of similar three-dimensional buoys. The buoy shape and the number and placement of the buoys may be arbitrarily selected. The program provides for waves of selected frequency and direction or combinations thereof by simple superposition; thus, the effects on energy absorption of wave energy spectral distributions or short-crestedness can be analyzed. The computer model has been validated by comparison of its results with published analytically derived power optimal solutions for five buoys in a linear array. The program provides the power output of each buoy in the array with the associated motions in six degrees of freedom. The limited number of cases studied has provided the interesting result that identical buoys in an array tend to absorb wave energy at rates close to those of optimized systems for which buoy amplitude and phasing would have to be controlled.


Sign in / Sign up

Export Citation Format

Share Document