sufficient stability conditions
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 18 (2) ◽  
pp. 172988142093986
Author(s):  
Yidao Ji ◽  
Wei Wu ◽  
Hang Fu ◽  
Hong Qiao

In this article, the networked filtering problem for a class of robotic manipulators with semi-Markov type parameters is investigated under the passivity framework. In particular, the mode-dependent quantization and event-triggered communication scheme are both proposed for increasing the network transmission efficiency. Sufficient stability conditions are first derived by choosing mode-dependent Lyapunov–Krasovskii functionals. Then, the mode-dependent filter gains and the event-triggering parameters are further designed with the help of matrix convex optimization. In the end, a simulation example is provided such that the effectiveness of the proposed filtering method can be well demonstrated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao-Qin Mo ◽  
Mi Zhou ◽  
Yuan Wang ◽  
Shang-Jia Guo

AbstractOn the basic of the fact that all signals in the practical system are always bounded, this paper proposes a 4-degree-of-freedom (DoF) anti-windup scheme for saturated systems with parametric uncertainty. A fairly straightforward tuning rule is introduced to the robust stability analysis for the proposed anti-windup structure under the framework of IQC (Integral Quadratic Constraint). And the sufficient stability conditions are derived to check the reasonable definiteness of the related transfer function. Moreover, the control design for disturbance response and set-point tracking response are two separate part in this proposed scheme. Numerical example demonstrates the effectiveness and the considerable performance improvement of the anti-windup compensator that is designed by the proposed technique.


Author(s):  
Vladimir I. Sumin

Earlier the author proposed a rather general form of describing controlled initial–boundary value problems (CIBVPs) by means of Volterra functional equations (VFE) z(t)=f(t,A[z](t),v(t) ), t≡{t^1,⋯,t^n }∈Π⊂R^n, z∈L_p^m≡(L_p (Π) )^m, where f(.,.,.):Π×R^l×R^s→R^m; v(.)∈D⊂L_k^s – control function; A:L_p^m (Π)→L_q^l (Π)- linear operator; the operator A is a Volterra operator for some system T of subsets of the set Π in the following sense: for any H∈T, the restriction A├ [z]┤|_H does not depend on the values of ├ z┤|_(Π\H); (this definition of the Volterra operator is a direct multidimensional generalization of the well-known Tikhonov definition of a functional Volterra type operator). Various CIBVP (for nonlinear hyperbolic and parabolic equations, integro-differential equations, equations with delay, etc.) are reduced by the method of conversion the main part to such functional equations. The transition to equivalent VFE-description of CIBVP is adequate to many problems of distributed optimization. In particular, the author proposed (using such description) a scheme for obtaining sufficient stability conditions (under perturbations of control) of the existence of global solutions for CIBVP. The scheme uses continuation local solutions of functional equation (that is, solutions on the sets H∈T). This continuation is realized with the help of the chain {H_1⊂H_2⊂⋯⊂H_(k-1)⊂H_k≡Π}, where H_i∈T, i=¯(1,k.) A special local existence theorem is applied. This theorem is based on the principle of contraction mappings. In the case p=q=k=∞ under natural assumptions, the possibility of applying this principle is provided by the following: the right-hand side operator F_v [z(.) ](t)≡f(t,A[z](t),v(t)) satisfies the Lipschitz condition in the operator form with the quasi-nilpotent «Lipschitz operator». This allows (using well-known results of functional analysis) to introduce in the space L_∞^m (H) such an equivalent norm in which the operator of the right-hand side will be contractive. In the general case 1≤p,q,k ≤∞, (this case covers a much wider class of CIBVP), the operator F_v; as a rule, does not satisfy such Lipschitz condition. From the results obtained by the author earlier, it follows that in this case there also exists an equivalent norm of the space L_p^m (H), for which the operator F_v is a contraction operator. The corresponding basic theorem (equivalent norm theorem) is based on the notion of equipotential quasi-nilpotency of a family of linear operators, acting in a Banach space. This article shows how this theorem can be applied to obtain sufficient stability conditions (under perturbations of control) of the existence of global solutions of VFE.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 200 ◽  
Author(s):  
Hong Li ◽  
Jun Cheng ◽  
Hou-Biao Li ◽  
Shou-Ming Zhong

In this paper, stability analysis of a fractional-order linear system described by the Caputo–Fabrizio (CF) derivative is studied. In order to solve the problem, character equation of the system is defined at first by using the Laplace transform. Then, some simple necessary and sufficient stability conditions and sufficient stability conditions are given which will be the basis of doing research of a fractional-order system with a CF derivative. In addition, the difference of stability domain between two linear systems described by two different fractional derivatives is also studied. Our results permit researchers to check the stability by judging the locations in the complex plane of the dynamic matrix eigenvalues of the state space.


Sign in / Sign up

Export Citation Format

Share Document