vegetation regeneration
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

Botany ◽  
2021 ◽  
Author(s):  
Mélina Guêné Nanchen ◽  
Marie-Claire LeBlanc ◽  
Line Rochefort

Fire plays a major role in structuring and the functioning of boreal ecosystems. As peatlands are important components of boreal forests, the impact of fire upon these wetter ecosystems is increasingly studied, but with the main focus on treed peatlands and Sphagnum-dominated bogs so far. Important fires occurring more frequently in the past decade in southern Northwest Territories (Canada) provide the opportunity to assess early post-fire vegetation regeneration in open rich fens (1, 2 and 5-years post-fire) and to better understand early recovery succession. We aimed to 1) evaluate whether and how open rich fens are affected by fire 2) describe short-term vegetation regeneration, for both bryophytes and vascular species. A shift was observed between pioneer bryophytes and brown mosses between the second and fifth-year post-fire. Vascular plants, especially slow-growing species and the ones reproducing mainly by seeds, recovered partially. The first bryophyte species recovering were pioneer species adapted to colonize burned environment such as Marchantia polymorpha or Ceratodon purpureus. For vascular plant species, the ones previously present and capable to regrowth rapidly from unburned plant structures (base of tussocks, rhizomes, roots) were represented by species like Betula glandulosa or Carex aquatilis. The wetter conditions and lower fuel availability of fen depressional biotopes were important factors controlling the resistance and regeneration of species associated with them.


2021 ◽  
Vol 11 (12) ◽  
pp. 5423
Author(s):  
Jose Luis Martinez ◽  
Manuel Esteban Lucas-Borja ◽  
Pedro Antonio Plaza-Alvarez ◽  
Pietro Denisi ◽  
Miguel Angel Moreno ◽  
...  

The evaluation of vegetation cover after post-fire treatments of burned lands is important for forest managers to restore soil quality and plant biodiversity in burned ecosystems. Unfortunately, this evaluation may be time consuming and expensive, requiring much fieldwork for surveys. The use of remote sensing, which makes these evaluation activities quicker and easier, have rarely been carried out in the Mediterranean forests, subjected to wildfire and post-fire stabilization techniques. To fill this gap, this study evaluates the feasibility of satellite (using LANDSAT8 images) and drone surveys to evaluate changes in vegetation cover and composition after wildfire and two hillslope stabilization treatments (log erosion barriers, LEBs, and contour-felled log debris, CFDs) in a forest of Central Eastern Spain. Surveys by drone were able to detect the variability of vegetation cover among burned and unburned areas through the Visible Atmospherically Resistant Index (VARI), but gave unrealistic results when the effectiveness of a post-fire treatment must be evaluated. LANDSAT8 images may be instead misleading to evaluate the changes in land cover after wildfire and post-fire treatments, due to the lack of correlation between VARI and vegetation cover. The spatial analysis has shown that: (i) the post-fire restoration strategy of landscape managers that have prioritized steeper slopes for treatments was successful; (ii) vegetation growth, at least in the experimental conditions, played a limited influence on soil surface conditions, since no significant increases in terrain roughness were detected in treated areas.


Flora ◽  
2021 ◽  
Vol 279 ◽  
pp. 151817
Author(s):  
Alessandra Fidelis ◽  
Cassy Anne Rodrigues ◽  
Mariana Dairel ◽  
Carolina C. Blanco ◽  
Valério D. Pillar ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 149
Author(s):  
Sara Huerta ◽  
Víctor Fernández-García ◽  
Elena Marcos ◽  
Susana Suárez-Seoane ◽  
Leonor Calvo

In Mediterranean fire-prone ecosystems, plant functional traits and burn severity have decisive roles in post-fire vegetation recovery. These traits may reflect plant fitness to fire regimes in the Mediterranean Basin. The aim of this study was to evaluate the effect of burn severity on post-fire vegetation regeneration through plant functional (physiological and regenerative) traits in two Mediterranean ecosystems: one more humid and colder (Cabrera in León province, NW Spain), and another characterized by a longer summer drought (Gátova in Valencia province, SE Spain). A total of 384 and 80 field plots (2 m × 2 m) were fixed in Cabrera and Gátova, respectively. In each burned plot, we quantified burn severity by means of the composite burn index (CBI), differentiating three severity levels (low, moderate, and high), and evaluated post-fire vegetation regeneration one and two years after wildfires. We measured the percentage cover of each species and classified them according to physiological (specific leaf area and N2-fixing capacity) and regenerative traits (reproductive strategy, bud bank location, and heat-stimulated germination). The main results showed that in Cabrera, burn severity had significant effects on vegetation cover independently of plant functional traits. In Gátova, burn severity effects differed among functional traits. In this site, the cover of plants with low specific leaf area and without heat-stimulation and N2-fixing capacity was negatively related to burn severity. On the contrary, the cover of N2-fixers and species with resprouting ability and heat-stimulated germination rose with increasing burn severity. In general, vegetation cover showed a more pronounced increased over time in the more humid area, mainly under the effect of high severity. The results of this research highlighted the importance of the use of plant functional traits as a driver to understand the response of different ecosystems to current fire regimes, which could be relevant for pre- and post-fire management.


2019 ◽  
Vol 231 ◽  
pp. 1004-1011 ◽  
Author(s):  
Roger Grau-Andrés ◽  
G. Matt Davies ◽  
Susan Waldron ◽  
E. Marian Scott ◽  
Alan Gray

2019 ◽  
pp. 1690-1708
Author(s):  
Dania Abdul Malak ◽  
Juli G. Pausas ◽  
Josep E. Pardo-Pascual ◽  
Luis A. Ruiz

This study area is located in the eastern littoral of the Iberian Peninsula; its importance resides in its Mediterranean ecosystem, complex topography, extensive land use changes, and intensive forest fires history. The study is done at the landscape level, covering a wide area for an extended period of time. This work uses Geographic Information Systems (GIS) and Satellite Remote Sensing (SRS) techniques to evaluate the impact of spatio-temporal parameters on shaping Mediterranean landscapes. Interacting ecological parameters are analysed and correlated to post-fire vegetation regeneration in an attempt to understand its dynamics. The results provide evidence that the number of fires separated by short time intervals influence vegetation growth negatively measured as Enhanced Vegetation Index (EVI). During this period, micro-climatic effects (soil and environmental humidity) are major factors influencing EVI-measured vegetation regeneration. The conclusions expect shifts in Mediterranean plant communities in heavily burned ecosystems stressing the importance of their correct short and long term post-fire management.


Sign in / Sign up

Export Citation Format

Share Document