sparse signal decomposition
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Fuming Zhou ◽  
Wuqiang Liu ◽  
Xiaoqiang Yang ◽  
Jinxing Shen ◽  
Peiping Gong

The normal operation of the hydraulic pump is the significant premise for the stable and dependable working of hydraulic equipment. Consequently, this research comes up with a health condition detection method of hydraulic pump. First of all, this approach selects resonance-based sparse signal decomposition (RSDD) to adaptively disintegrate vibration signals. The biggest problem of the RSDD algorithm is the requirement to artificially set a large number of key parameters, such as quality factor Q, weight coefficient A, and Lagrange operator u. The improper parameter settings will seriously affect the decomposition performance. To overcome this shortcoming, an enhanced whale optimization algorithm is presented to search the best parameter combination of the RSDD. The algorithm takes the correlation kurtosis as the optimization objective function to adaptively disintegrate the signal into low and high resonance components. Moreover, on the basis of the modified analytic hierarchy process and the amplitude-aware permutation entropy, the modified hierarchical amplitude-aware permutation entropy is raised for measuring the complexity of the measured time series more accurately and comprehensively. After that, a health condition detection method for hydraulic pump based on enhanced whale optimization-resonance-based sparse signal decomposition and modified hierarchical amplitude-aware permutation entropy is raised. Finally, through the usage of the hydraulic pump vibration data, this method is compared with other approaches. According to the experimental results, the raised method can identify the fault type more effectively, which is capable of offering a feasible idea for the health condition detection of hydraulic equipment.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 601-612
Author(s):  
Du Juan ◽  
Lu Yan ◽  
Tao Xian ◽  
Zheng Yu ◽  
Chen Guo Chu

The main purpose of the paper is to propose a new method to achieve separating periodic impulse signal among multi-component mixture signal and its application to the fault detection of rolling bearing. In general, as local defects occur in a rotating machinery, the vibration signal always consists of periodic impulse components along with other components such as harmonic component and noise; impulse component reflects the condition of rolling bearing. However, different components of multi-component mixture signal may approximately have same center frequency and bandwidth coincides with each other that is difficult to disentangle by linear frequency-based filtering. In order to solve this problem, the author introduces a proposed method based on resonance-based sparse signal decomposition integrated with empirical mode decomposition and demodulation that can separate the impulse component from the signal, according to the different Q-factors of impulse component and harmonic component. Simulation and application examples have proved the effectiveness of the method to achieve fault detection of rolling bearing and signal preprocessing.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 1111-1121 ◽  
Author(s):  
Yan Lu ◽  
Juan Du ◽  
Xian Tao

When a localized defect is induced, the vibration signal of rolling bearing always consists periodic impulse component accompanying with other components such as harmonic interference and noise. However, the incipient impulse component is often submerged under harmonic interference and background noise. To address the aforementioned issue, an improved method based on resonance-based sparse signal decomposition with optimal quality factor ( Q-factor) is proposed in this paper. In this method, the optimal Q-factor is obtained first by genetic algorithm aiming at maximizing kurtosis value of low-resonance component of vibration signal. Then, the vibration signal is decomposed based on resonance-based sparse signal decomposition with optimal Q-factor. Finally, the low-resonance component is analyzed by empirical model decomposition combination with energy operator demodulating; the fault frequency can be achieved evidently. Simulation and application examples show that the proposed method is effective on extracting periodic impulse component from multi-component mixture vibration signal.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 136358-136368
Author(s):  
Hailan Chen ◽  
Haixin Sun ◽  
Naveed Ur Rehman Junejo ◽  
Guangsong Yang ◽  
Jie Qi

Sign in / Sign up

Export Citation Format

Share Document