free carriers
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 62)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yang Luo ◽  
Hai Wang ◽  
Le-Yi Zhao ◽  
Yong-Lai Zhang

We have investigated a strong coupled system composed of a MAPbIxCl3-x perovskite film and aluminum conical nanopits array. The hybrid states formed by surface plasmons and free carriers, rather than the traditional excitons, is observed in both steady-state reflection measurements and transient absorption spectra. In particular, under near upper band resonant excitation, the bleaching signal from the band edge of uncoupled perovskite was completely separated into two distinctive bleaching signals of the hybrid system, which is clear evidence for the formation of strong coupling states between the free carrier–plasmon state. Besides this, a Rabi splitting up to 260 meV is achieved. The appearance of the lower bands can compensate for the poor absorption of the perovskite in the NIR region. Finally, we found that the lifetime of the free carrier–SP hybrid states is slightly shorter than that of uncoupled perovskite film, which can be caused by the ultrafast damping of the SPs modes. These peculiar features on the strong coupled hybrid states based on free charge carriers can open new perspectives for novel plasmonic perovskite solar cells.


Author(s):  
Yuyan Li ◽  
Huan Ye ◽  
Yunpeng Qu ◽  
Zongxiang Wang ◽  
Kai Sun

Abstract Three-dimensional (3D) carbon networks composed of graphene (GR) and carbon nanotube (CNT) were constructed in copper calcium titanate (CCTO) in order to realize negative permittivity behavior. The results show that negative permittivity can be obtained at kHz frequencies above percolation threshold when 3D carbon networks are successfully constructed. Negative permittivity originates from the low-frequency plasmonic state which is explained by the Drude model. The magnitude of negative permittivity was tuned between 105 and 106 which significantly correlates with concentration of free carriers. Moreover, the reactance spectra clarify the inductive character of negative permittivity materials.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Emanuel Peinke ◽  
Tobias Sattler ◽  
Guilherme M. Torelly ◽  
Patricia L. Souza ◽  
Sylvain Perret ◽  
...  

AbstractWe review recent studies of cavity switching induced by the optical injection of free carriers in micropillar cavities containing quantum dots. Using the quantum dots as a broadband internal light source and a streak camera as detector, we track the resonance frequencies for a large set of modes with picosecond time resolution. We report a record-fast switch-on time constant (1.5 ps) and observe major transient modifications of the modal structure of the micropillar on the 10 ps time scale: mode crossings are induced by a focused symmetric injection of free carriers, while a lifting of several mode degeneracies is observed when off-axis injection breaks the rotational symmetry of the micropillar. We show theoretically and experimentally that cavity switching can be used to tailor the dynamic properties of the coupled QD–cavity system. We report the generation of ultrashort spontaneous emission pulses (as short as 6 ps duration) by a collection of frequency-selected QDs in a switched pillar microcavity. These pulses display a very small coherence length, attractive for ultrafast speckle-free imaging. Moreover, the control of QD-mode coupling on the 10 ps time scale establishes cavity switching as an appealing resource for quantum photonics.


2021 ◽  
Vol 5 (9) ◽  
Author(s):  
Kingsley O. Egbo ◽  
Ayotunde E. Adesina ◽  
Chioma V. Ezeh ◽  
Chao Ping Liu ◽  
Kin Man Yu

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Megersa Wodajo Shura

In this research, the ranges of the localized states in which the recombination and the trapping rates of free carriers dominate the entire transition rates of free carriers in the bandgap of the p-type semiconductor are described. Applying the Shockley–Read–Hall model to a p-type material under a low injection level, the expressions for the recombination rates, the trapping rates, and the excess carrier lifetimes (recombination and trapping) were described as functions of the localized state energies. Next, the very important quantities called the excess carriers’ trapping ratios were described as functions of the localized state energies. Variations of the magnitudes of the excess carriers’ trapping ratios with the localized state energies enable us to categorize the localized states in the bandgap as the recombination, the trapping, the acceptor, and the donor levels. Effects of the majority and the minority carriers’ trapping on the excess carrier lifetimes are also evaluated at different localized energy levels. The obtained results reveal that only excess minority trapping affects the excess carrier lifetimes, and excess majority carrier trapping has no effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sergio C. de la Barrera ◽  
Qingrui Cao ◽  
Yang Gao ◽  
Yuan Gao ◽  
Vineetha S. Bheemarasetty ◽  
...  

AbstractFerroelectricity, the electrostatic counterpart to ferromagnetism, has long been thought to be incompatible with metallicity due to screening of electric dipoles and external electric fields by itinerant charges. Recent measurements, however, demonstrated signatures of ferroelectric switching in the electrical conductance of bilayers and trilayers of WTe2, a semimetallic transition metal dichalcogenide with broken inversion symmetry. An especially promising aspect of this system is that the density of electrons and holes can be continuously tuned by an external gate voltage. This degree of freedom enables measurement of the spontaneous polarization as free carriers are added to the system. Here we employ capacitive sensing in dual-gated mesoscopic devices of bilayer WTe2 to directly measure the spontaneous polarization in the metallic state and quantify the effect of free carriers on the polarization in the conduction and valence bands, separately. We compare our results to a low-energy model for the electronic bands and identify the layer-polarized states that contribute to transport and polarization simultaneously. Bilayer WTe2 is thus shown to be a fully tunable ferroelectric metal and an ideal platform for exploring polar ordering, ferroelectric transitions, and applications in the presence of free carriers.


Author(s):  
Jin Yang ◽  
Shaolong Jiang ◽  
Jiafeng Xie ◽  
Huacho Jiang ◽  
Shujuan Xu ◽  
...  

2021 ◽  
Author(s):  
Mulong Liu ◽  
wenmi shi ◽  
qiyuan sun ◽  
Huimin Huang ◽  
zhizhou lu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document