Development and characterization of a novel multifunctional film based on wheat filter flour incorporated with carvacrol: Antibacterial, antifungal, and insecticidal potentials

2021 ◽  
pp. 108201322110418
Author(s):  
Maryam Pyro- Mossavi ◽  
Mahboobeh Kashiri ◽  
Yahya Maghsoudlou ◽  
Morteza Khomiri ◽  
Mehran Alami

Wheat filter flour is a by-product derived from the modern wheat milling process. In this study, the influence of plasticizer type (glycerol (G) and sorbitol (S)) and content (25, 35, and 45 g/100 g polymer) on the wheat filter flour-based film was evaluated. Regardless of plasticizer type, increasing the plasticizer content enhanced moisture content, water solubility, and water vapor permeability of film samples. The S-plasticized films presented the greatest tensile strength and the lowest EAB%. The scanning electron microscope observations confirmed the uniform structure of G-plasticized film. Moreover, antimicrobial and physico-mechanical properties of G-plasticized (25%) film were evaluated at the presence of carvacrol (5 and 10 g/100 g polymer). The considerable improvement was achieved in water affinity (14.2%) and flexibility (8.6%) by incorporating 10% carvacrol in G-plasticized films. The greatest inhibitory properties of active wheat filter flour films were observed against Aspergillus niger. By increasing the carvacrol concentration in film-forming solution, the inhibitory activity against Listeria monocytogenes and Escherichia coli in the liquid food model system was increased by 90.3% and 66.95%, respectively. Moreover, the active wheat filter flour-based film released a considerable insecticidal activity against Sitophilus granarius and Tribolium confusum. This work offers a novel utilization of wheat filter flour as an inexpensive blend polymer to manufacture multifunctional active film, which provides a promising approach for pest management besides enhancing the safety of products.

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1414
Author(s):  
Carola Esposito Corcione ◽  
Raffaella Striani ◽  
Francesca Ferrari ◽  
Paolo Visconti ◽  
Daniela Rizzo ◽  
...  

This work represents an innovative study that, for the first time, explores the possibility to use waste flours to produce thermoplastic polymeric bio-films. To the best of our knowledge, this is the first time that waste flours, derived from bakeries, pizzerias or pasta factories, have been proposed for the production of bio-polymers, as a replacement of neat starch. To this aim, durum waste flour derived from a pasta factory, soft waste flour derived from pizzerias and neat maize starch used as control material were firstly analyzed from dimensional, morphological and chemical points of view. Afterwards, waste flour films were produced by the addition of a nature-based plasticizer, glycerol. Mechanical characterization of the plasticized thermoplastic films, produced by compression molding, evidenced low performances, even in the case of the neat maize starch. In order to improve the mechanical properties, the possibility to include polylactic acid and cardanol-based plasticizer was also investigated. Mass transport properties of all the produced bio-films were investigated by measuring their water vapor permeability and hygroscopic absorption. The durability properties of the bio-films were assessed by accelerated ageing tests, while the bio-degradability of the waste-based films was evaluated by measuring the solubility and the degradation in water. The physicochemical analyses of the novel bio-films evidenced good mechanical properties; specifically, the waste-based films showed a lower hygroscopic absorption and water solubility than those of the blends containing neat starch.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2632
Author(s):  
Daniela G. M. Pereira ◽  
Jorge M. Vieira ◽  
António A. Vicente ◽  
Rui M. S. Cruz

Pectin films were developed by incorporating a halophyte plant Salicornia ramosissima (dry powder from stem parts) to modify the film’s properties. The films’ physicomechanical properties, Fourier-transform infrared spectroscopy (FTIR), and microstructure, as well as their biodegradation capacity in soil and seawater, were evaluated. The inclusion of S. ramosissima significantly increased the thickness (0.25 ± 0.01 mm; control 0.18 ± 0.01 mm), color parameters a* (4.96 ± 0.30; control 3.29 ± 0.16) and b* (28.62 ± 0.51; control 12.74 ± 0.75), water vapor permeability (1.62 × 10−9 ± 1.09 × 10−10 (g/m·s·Pa); control 1.24 × 10−9 ± 6.58 × 10−11 (g/m·s·Pa)), water solubility (50.50 ± 5.00%; control 11.56 ± 5.56%), and elongation at break (5.89 ± 0.29%; control 3.91 ± 0.62%). On the other hand, L* (48.84 ± 1.60), tensile strength (0.13 ± 0.02 MPa), and Young’s modulus (0.01 ± 0 MPa) presented lower values compared with the control (L* 81.20 ± 1.60; 4.19 ± 0.82 MPa; 0.93 ± 0.12 MPa), while the moisture content varied between 30% and 45%, for the film with S. ramosissima and the control film, respectively. The addition of S. ramosissima led to opaque films with relatively heterogeneous microstructures. The films showed also good biodegradation capacity—after 21 days in soil (around 90%), and after 30 days in seawater (fully fragmented). These results show that pectin films with S. ramosissima may have great potential to be used in the future as an eco-friendly food packaging material.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2569
Author(s):  
Mia Kurek ◽  
Nasreddine Benbettaieb ◽  
Mario Ščetar ◽  
Eliot Chaudy ◽  
Maja Repajić ◽  
...  

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 384
Author(s):  
Juan Tirado-Gallegos ◽  
Paul Zamudio-Flores ◽  
José Ornelas-Paz ◽  
Claudio Rios-Velasco ◽  
Guadalupe Olivas Orozco ◽  
...  

Apple starch films were obtained from apples harvested at 60, 70, 80 and 90 days after full bloom (DAFB). Mechanical properties and water vapor permeability (WVP) were evaluated. The apple starch films at 70 DAFB presented higher values in the variables of tensile strength (8.12 MPa), elastic modulus (3.10 MPa) and lower values of water vapor permeability (6.77 × 10−11 g m−1 s−1 Pa−1) than apple starch films from apples harvested at 60, 80 and 90 DAFB. Therefore, these films were chosen to continue the study incorporating ellagic acid (EA). The EA was added at three concentrations [0.02% (FILM-EA0.02%), 0.05% (FILM-EA0.05%) and 0.1% (FILM-EA0.1%) w/w] and compared with the apple starch films without EA (FILM-Control). The films were characterized by their physicochemical, optical, morphological and mechanical properties. Their thermal stability and antioxidant capacity were also evaluated. The FILM-Control and FILM-EA0.02% showed a uniform surface, while FILM-EA0.05% and FILM-EA0.1% showed a rough surface and insoluble EA particles. Compared to FILM-Control, EA modified the values of tensile strength, elasticity modulus and elongation at break. The antioxidant capacity increased as EA concentration did. EA incorporation allowed obtaining films with higher antioxidant capacity, capable of blocking UV light with better mechanical properties than film without EA.


Coatings ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 183 ◽  
Author(s):  
Thi Cao ◽  
So-Young Yang ◽  
Kyung Song

In this study, barnyard millet starch (BMS) was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO). The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.


2016 ◽  
Vol 88 (3) ◽  
pp. 275-292 ◽  
Author(s):  
Jefferson M Souza ◽  
Sandra Sampaio ◽  
Welter C Silva ◽  
Sidney G de Lima ◽  
Andrea Zille ◽  
...  

Eight functional single jersey plain knitted fabrics have been developed in order to assess a quantitative analysis of various comfort-related properties in terms of thermal control, air and water vapor permeability, wickability, coefficient of kinetic friction and antimicrobial efficiency, using eight different commercially available functional yarns: Polyester Craque® and viscose Craque® conventional yarns as controls; Finecool® and Coolmax® polyester yarns for moisture management and quick drying; Holofiber® polyester yarns containing an optical responsive material that the producer claims to improve body oxygenation; Airclo® polyester hollow yarns for efficient control of body temperature; and, finally, polyester Trevira® and viscose Seacell® for antimicrobial activity. According to the results, Coolmax® for moisture management, Airclo® for thermal control and Seacell® for antimicrobial activity present the best performances as technical textiles for sportswear for the respective specific functional property.


2013 ◽  
Vol 750-752 ◽  
pp. 1582-1585
Author(s):  
Chun Hong Zhang ◽  
Nan Chang ◽  
Chen Li ◽  
Xin Hua Li

Zein was added into wheat gluten (WG) to prepare zein composite films (ZCF) in order to improve the properties of films. The film-forming ability, properties, surface microstructure and infrared spectrum of WG films and ZCF were investigated. The results show that the viscosity of film-forming solutions decrease, and uniformity become worse slightly, after zein added. ZCF are yellow, with metal luster, whose toughness and water retention increase. Compared to the control, the ZCF tensile strength (TS), elongation at break (EB) and resistance of oxygen are increased by 33.2%, 17.2% and 11.25%, and water vapor permeability (WVP) and transparency are decreased by 26.0% and 75.4% respectively. ZCF have better antibacterial properties than WG films. The inhibition effect on escherichia coli and staphylococcus aureus are increased by 36.36% and 32.89% respectively. Hydrogen bond interaction of ZCF become weak, and the surface of ZCF become smooth and evenly.


2021 ◽  
Author(s):  
Aritra Sinha

Abstract This study focuses on the development and characterization of a novel biodegradable edible film made from soy protein isolate enriched with alginate-glycyrrhizin nanogel(GL-ALG NGP). Nanoparticles of particle sizes below 100 nm were synthesized using glycyrrhizin(GL), calcium chloride and, sodium alginate(SA) through the reverse micro-emulsion/internal gelation method. Soy protein isolate (SPI) based films were prepared by a simple casting procedure by incorporating GL-ALG NGPs in SPI solution in different ratios of (SPI: GL-ALG NGPs) 5:0, 5:1, 2:1, 1:1, and 1:1.5. Glycerol was used as a plasticizer in the film-forming solution. The effects of the proportions of GL-ALG NGPs addition on the thickness, mechanical properties, water vapor permeability, UV barrier performance, antioxidant activity, and antimicrobial property of the obtained films were studied. The GL-ALG NGPs were analyzed using Dynamic Light Scattering. Microstructural studies of obtained films were performed using Scanning Electron microscopy. Results show incorporation of GL-ALG NGPs in soy protein-alginate complex produced smoother, compact, and more continuous matrices as compared to pure SPI films. The test results indicated that blending of SPI with GL-ALG NGPs in the ratio 1:1 increased tensile strength of obtained films by 185%, reduced water solubility to 23.59%, and water vapor permeability to 0.3087 g-mm/m2-d-kPa. Obtained films exhibited good UV barrier performance, antioxidant activity and inhibited the growth of E. coli, S. aureus, Enterobacter sakazakii, and A. niger. So, soy protein isolate-based films enriched with GL-ALG NGPs are active biodegradable edible films that can be used to extend the shelf life of food products.


Sign in / Sign up

Export Citation Format

Share Document