ellipsoidal uncertainty
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 55 (5) ◽  
pp. 2941-2961
Author(s):  
Pulak Swain ◽  
Akshay Kumar Ojha

Portfolio Optimization is based on the efficient allocation of several assets, which can get heavily affected by the uncertainty in input parameters. So we must look for such solutions which can give us steady results in uncertain conditions too. Recently, the uncertainty based optimization problems are being dealt with robust optimization approach. With this development, the interest of researchers has been shifted toward the robust portfolio optimization. In this paper, we study the robust counterparts of the uncertain mean-variance problems under box and ellipsoidal uncertainties. We convert those uncertain problems into bi-level optimization models and then derive their robust counterparts. We also solve a problem using this methodology and compared the optimal results of box and ellipsoidal uncertainty models with the nominal model.


2020 ◽  
Vol 43 (2) ◽  
pp. 491-518
Author(s):  
Emmanuel Kwasi Mensah

AbstractThis paper extends the conventional DEA models to a robust DEA (RDEA) framework by proposing new models for evaluating the efficiency of a set of homogeneous decision-making units (DMUs) under ellipsoidal uncertainty sets. Four main contributions are made: (1) we propose new RDEA models based on two uncertainty sets: an ellipsoidal set that models unbounded and correlated uncertainties and an interval-based ellipsoidal uncertainty set that models bounded and correlated uncertainties, and study the relationship between the RDEA models of these two sets, (2) we provide a robust classification scheme where DMUs can be classified into fully robust efficient, partially robust efficient and robust inefficient, (3) the proposed models are extended to the additive DEA model and its efficacy is analyzed with two imprecise additive DEA models in the literature, and finally, (4) we apply the proposed models to study the performance of banks in the Italian banking industry. We show that few banks which were resilient in their performance can be robustly classified as partially efficient or fully efficient in an uncertain environment.


2019 ◽  
Vol 24 (4) ◽  
pp. 85 ◽  
Author(s):  
Mensah ◽  
Rocca

Robust goal programming (RGP) is an emerging field of research in decision-making problems with multiple conflicting objectives and uncertain parameters. RGP combines robust optimization (RO) with variants of goal programming techniques to achieve stable and reliable goals for previously unspecified aspiration levels of the decision-maker. The RGP model proposed in Kuchta (2004) and recently advanced in Hanks, Weir, and Lunday (2017) uses classical robust methods. The drawback of these methods is that they can produce optimal values far from the optimal value of the “nominal” problem. As a proposal for overcoming the aforementioned drawback, we propose light RGP models generalized for the budget of uncertainty and ellipsoidal uncertainty sets in the framework discussed in Schöbel (2014) and compare them with the previous RGP models. Conclusions regarding the use of different uncertainty sets for the light RGP are made. Most importantly, we discuss that the total goal deviations of the decision-maker are very much dependent on the threshold set rather than the type of uncertainty set used.


Author(s):  
İhsan Yanıkoğlu

This paper proposes robust reformulations of ambiguous chance constraints when the underlying family of distributions is discrete and supported in a so-called ``p-box'' or ``p-ellipsoidal'' uncertainty set. Using the robust optimization paradigm, the deterministic counterparts of the ambiguous chance constraints are reformulated as mixed-integer programming problems which can be tackled by commercial solvers for moderate sized instances. For larger sized instances, we propose a safe approximation algorithm that is computationally efficient and yields high quality solutions. The associated approach and the algorithm can be easily extended to joint chance constraints, nonlinear inequalities, and dependent data without introducing additional mathematical optimization complexity to that of the original robust reformulation. In numerical experiments, we first present our approach over a toy-sized chance constrained knapsack problem. Then, we compare optimality and computational performances of the safe approximation algorithm with those of the exact and the randomized approaches for larger sized instances via Monte Carlo simulation.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 588 ◽  
Author(s):  
Bo Du ◽  
Hong Zhou

In this study, we apply a robust optimization approach to a p-center facility location problem under uncertainty. Based on a symmetric interval and a multiple allocation strategy, we use three types of uncertainty sets to formulate the robust problem: box uncertainty, ellipsoidal uncertainty, and cardinality-constrained uncertainty. The equivalent robust counterpart models can be solved to optimality using Gurobi. Comprehensive numerical experiments have been conducted by comparing the performance of the different robust models, which illustrate the pattern of robust solutions, and allocating a demand node to multiple facilities can reduce the price of robustness, and reveal that alternative models of uncertainty can provide robust solutions with different conservativeness.


Sign in / Sign up

Export Citation Format

Share Document