cumulative co2 emissions
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 11 (24) ◽  
pp. 11639
Author(s):  
Youling Wang ◽  
Huizhen Qiu ◽  
Mengchan Li ◽  
Philip Ghanney

The objective of this research was to explore the effects of different aeration methods on NH3 and greenhouse gas (GHG) emissions and the losses of carbon and nitrogen from composting of cow manure and corn stalks in the laboratory-scale reactors. Here, we designed three treatments, including continuous aerated treatment C1 (aeration rates 0.21 L·kg−1 dry matter (DM)·min−1) and intermittent aerated treatments I1 (aeration rates 0.42 L·kg−1 DM·min−1; aerate 10 min, stop 10 min) and I2 (aeration rates 0.84 L·kg−1 DM·min−1; aerate 5 min, stop 15 min). The results showed that the physicochemical parameters (temperature, pH values, and germination index) of composting products met the requirements of maturity and sanitation. Compared with continuous aerated treatment C1, the cumulative NH3 emissions of I1 and I2 treatments decreased by 24.37% and 19.27%, while the cumulative CO2 emissions decreased by 13.01% and 20.72%. On the contrary, the cumulative N2O emissions of I1 and I2 treatments increased by 22.22% and 43.14%. CO2 emission was the principal pathway for the TOC losses, which comprised over 65% of TOC losses. C1 treatment had the highest TOC losses due to its highest cumulative CO2 emissions. The TN losses of I1 and I2 treatments reduced 9.07% and 6.1% compared to C1 treatment, so the intermittent aerated modes could reduce the TN loss. Due to the potential for mitigation of gaseous emissions, I1 treatment was recommended to be used in aerobic composting of cow manure.


Author(s):  
Daniel Gouge ◽  
Evelyne Thiffault ◽  
Nelson Thiffault

Biomass procured from forests affected by natural disturbances as a bioenergy source is increasingly considered in the context of climate change mitigation. By comparing clearcuts with and without biomass procurement, we aimed to determine the effects of biomass extraction performed alongside lumber harvesting on regeneration density, number of planting microsites, forest renewal costs, and carbon fluxes, in harvested boreal stands affected by spruce budworm. Results showed that biomass procurement increased regeneration density and number of planting microsites. Reduction of downed woody debris due to biomass procurement lowered site preparation costs by 282.07 CAD•ha-1, equivalent to 14.45 CAD per oven-dry metric tonne (odmt-1) of harvested biomass. Product value from biomass processing had to reach from 13.90–76.84 CAD•odmt-1 to make biomass procurement operations profitable. Since biomass procurement significantly increased stocking and reduced the amount of decaying debris, it also reduced cumulative CO2 emissions relative to scenarios without biomass procurement. However, ensuring forest renewal through site preparation and plantation per se, irrespective of biomass procurement, played a more important role for carbon sequestration and net balance. Integrating biomass harvesting to silviculture could have significant ecological and financial impacts on forest management while supporting mitigation efforts against climate change.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 189
Author(s):  
Jinbiao Li ◽  
Jin-Hyeob Kwak ◽  
Scott X. Chang ◽  
Xiaoqiang Gong ◽  
Zhengfeng An ◽  
...  

Forestlands are widely distributed in the dominantly agricultural landscape in western Canada, and they play important ecological functions; such forestlands (e.g., shelterbelts) accumulate soil organic matter and may receive a substantial amount of nitrogen in the form of surface and subsurface runoff from adjacent croplands and become a significant source of emissions of greenhouse gases (GHGs) such as CO2, N2O, and CH4. Biochar and nitrapyrin applications could potentially mitigate GHG emissions, but their co-application in forest soils has not been studied. We investigated the effect of the application of biochars produced at low (300 °C; BC300) and high temperatures (700 °C; BC700) using canola (Brassica napus L.) straw and the effect of their co-application with nitrapyrin on GHG emissions and soil properties in a 35-day laboratory incubation experiment using forest soils collected from five shelterbelt sites. Results showed no significant interaction effect of biochar and nitrapyrin on the global warming potential (GWP) of the GHG emissions, and the GWP was 15.8% lower in the soil with nitrapyrin than without nitrapyrin application treatments. The GWP was significantly enhanced by BC300 addition due to a 26.9% and 627.1% increase in cumulative CO2 and N2O emissions, respectively, over the 35-day incubation. The GWP significantly decreased by BC700 addition due to a 27.1% decrease in cumulative CO2 emissions. However, biochar addition did not affect CH4 emissions, while nitrapyrin decreased CH4 uptake by 50.5%. With BC300 addition, soil-dissolved organic carbon and microbial biomass carbon increased by 26.5% and 33.9%, respectively, as compared to no biochar addition (CK). Soil pH increased by 0.16 and 0.37 units after the addition of BC300 and BC700, respectively. Overall, the effect of biochar and nitrapyrin was independent in mitigating GHG emissions and was related to the type of biochar applied and changes in soil properties.


2020 ◽  
Vol 15 (7) ◽  
pp. 074017 ◽  
Author(s):  
Z R J Nicholls ◽  
R Gieseke ◽  
J Lewis ◽  
A Nauels ◽  
M Meinshausen

Author(s):  
Wang ◽  
Yang ◽  
Ren ◽  
He ◽  
Wei ◽  
...  

Alternative irrigation between saline water and groundwater can alleviate shortages of available agricultural water while effectively slowing the adverse effects of saline water on the soil-crop system when compared with continuous irrigation with saline water and blending irrigation between saline water and groundwater. In 2018, we tested the effect on soil CO2 and N2O emissions by two types of irrigation regimes (alternating groundwater and saline water (GW-SW), and alternating groundwater, followed by two cycles of saline water (GW-SW-SW)) between groundwater and three levels of salinity of irrigation water (mineralization of 2 g/L, 3.5 g/L, and 5 g/L), analyzed the correlation between gas emissions and soil properties, calculated comprehensive global warming potential (GWP), and investigated the maize yield. The results show that, with the same alternate irrigation regime, cumulative CO2 emissions decreased with increasing irrigation water salinity, and cumulative N2O emissions increased. Cumulative CO2 emissions were higher in the GW-SW regime for the same irrigation water salinity, and cumulative N2O emissions were higher in the GW-SW-SW regime. The GW-SW-SW regime had less comprehensive GWP and maize yield as compared to the GW-SW regime. The 2 g/L salinity in both regimes showed larger comprehensive GWP and maize yield. The 3.5 g/L salinity under the GW-SW regime will be the best choice while considering that the smaller comprehensive GWP and the larger maize yield are appropriate for agricultural implication. Fertilizer type and irrigation amount can be taken into consideration in future research direction.


2018 ◽  
Vol 9 (3) ◽  
pp. 1085-1095 ◽  
Author(s):  
Matthias Aengenheyster ◽  
Qing Yi Feng ◽  
Frederick van der Ploeg ◽  
Henk A. Dijkstra

Abstract. If the Paris Agreement targets are to be met, there may be very few years left for policy makers to start cutting emissions. Here we calculate by what year, at the latest, one has to take action to keep global warming below the 2 K target (relative to pre-industrial levels) at the year 2100 with a 67 % probability; we call this the point of no return (PNR). Using a novel, stochastic model of CO2 concentration and global mean surface temperature derived from the CMIP5 ensemble simulations, we find that cumulative CO2 emissions from 2015 onwards may not exceed 424 GtC and that the PNR is 2035 for the policy scenario where the share of renewable energy rises by 2 % year−1. Pushing this increase to 5 % year−1 delays the PNR until 2045. For the 1.5 K target, the carbon budget is only 198 GtC and there is no time left before starting to increase the renewable share by 2 % year−1. If the risk tolerance is tightened to 5 %, the PNR is brought forward to 2022 for the 2 K target and has been passed already for the 1.5 K target. Including substantial negative emissions towards the end of the century delays the PNR from 2035 to 2042 for the 2 K target and to 2026 for the 1.5 K target. We thus show how the PNR is impacted not only by the temperature target and the speed by which emissions are cut but also by risk tolerance, climate uncertainties and the potential for negative emissions. Sensitivity studies show that the PNR is robust with uncertainties of at most a few years.


2018 ◽  
Author(s):  
Matthias Aengenheyster ◽  
Qing Yi Feng ◽  
Frederik van der Ploeg ◽  
Henk A. Dijkstra

Abstract. If the Paris targets are to be met, there may be very few years left for policy makers to start cutting emissions. Here, we ask by what year at the latest one has to take action to keep global warming below the 2 K target (relative to preindustrial levels) at the year 2100 with a 67 % probability; we call this the Point of No Return (PNR). Using a novel, stochastic model of CO2 concentration and global mean surface temperature derived from the CMIP5 ensemble simulations, we find that cumulative CO2 emissions from 2015 onwards may not exceed 424 GtC and that the PNR is 2035 for the policy scenario where the share of renewable energy rises by 2 % per year. Pushing this increase to 5 % per year delays the PNR until 2045. For the 1.5 K target, the carbon budget is only 198 GtC and there is no time left before starting to increase the renewable share by 2 % per year. If the risk tolerance is tightened to 5 %, the PNR is brought forward to 2022 for the 2 K target and has been passed already for the 1.5 K target. Including substantial negative emissions towards the end of the century delays the PNR from 2035 to 2042 for the 2 K and to 2026 for the 1.5 K target, respectively. We thus show the impact on the PNR not only of the temperature target and the speed by which emissions are cut, but also of risk tolerance, climate uncertainties and the potential for negative emissions.


Sign in / Sign up

Export Citation Format

Share Document