confocal calcium imaging
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Hiroshi Onimaru ◽  
Itaru Yazawa ◽  
Kotaro Takeda ◽  
Isato Fukushi ◽  
Yasumasa Okada

It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat in vitro preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25–26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO2 from 2% CO2) and then to hypoxic stimulation (to 0% O2 from 95% O2 at 5% CO2). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K+, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K+ stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 μM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Jimenez-Sabado ◽  
S Casabella ◽  
P Izquierdo ◽  
C Tarifa ◽  
A Llach ◽  
...  

Abstract Background Atrial fibrillation has been associated with an increase in ryanodine receptor (RyR2) phosphorylation and local calcium release (calcium sparks). Carvedilol, a nonselective beta-adrenergic receptor blocker also inhibits the cardiac ryanodine receptor (RyR2), but it has been suggested that the enantiomer R-carvedilol only inhibits RyR2 activity and hence has the potential to inhibit calcium sparks without affecting RyR2 phosphorylation. Purpose This study aimed to determine the ability of the enantiomers R- and S-carvedilol to reverse RyR2 phosphorylation at s2808 and calcium sparks induced by the β2-adrenergic agonist fenoterol, in order to determine the relationship between RyR2 phosphorylation at s2808 and calcium spark frequency, and to assess the efficacy of R- and S-carvedilol. Methods Human right atrial myocytes were isolated and subjected to immunofluorescent labelling of total and s2808 phosphorylated RyR2, or loaded with fluo-4 and subjected to confocal calcium imaging. Beta-adrenergic receptors were first activated with 3μM fenoterol and then inhibited by different concentrations of carvedilol R- or S-enantiomers. Results Incubation of myocytes with fenoterol increased the s2808/RyR2 ratio from 0.32±0.03 to 0.66±0.05 (n=18, p<0.001). Incubation with 0.1, 0.3, 1 or 3μM R-carvedilol in the presence of fenoterol changed the s2808/RyR2 ratio to 0.64±0.05, 0.44±0.04, 0.34±0.07 and 0.28±0.05 (p<0.01) respectively. For comparison 3μM S-carvedilol reduced the s2808/RyR2 ratio to 0.23±0.06 in myocytes from 5 patients (p<0.01). Confocal calcium imaging revealed that fenoterol increased the spark density from 0.28±0.04 to 1.24±0.25 events/s/1000μm2 (n=9, p<0.01) and addition of 0.1, 0.3, or 1μM R-carvedilol changed the frequency to 1.32±0.52, 0.38±0.05, and 0.15±0.05 events/s/1000μm2 (p<0.01) respectively. Analysis of atrial myocytes from patients without atrial fibrillation revealed that the s2808/RyR2 ratio was similar in 25 patients treated with beta-blockers (0.39±0.04) and 57 that did not receive beta-blockers (0.44±0.03, p=0.33) while the s2808/RyR2 ratio was significantly smaller in 16 patients with atrial fibrillation receiving beta-blockers (0.43±0.08) than in 5 patients that did not (0.80±0.19, p<0.05). Conclusions R-carvedilol reverses the effects of beta-adrenergic stimulation on s2808 phosphorylation and calcium sparks in human atrial myocytes, and treatment with beta-blockers reduces excessive RyR2 phosphorylation at s2808 in patients with atrial fibrillation to levels observed in those without the arrhythmia, pointing to beta-adrenergic receptors as a target for controlling RyR2 phophorylation and activity in atrial fibrillation. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Spanish Ministry of Science and Innovation & Spanish Ministry of Health and Consume


2018 ◽  
Author(s):  
Sara C.M. Leijon ◽  
Amanda F. Neves ◽  
Joseph M. Breza ◽  
Sidney A. Simon ◽  
Nirupa Chaudhari ◽  
...  

When consumed with foods, mint, mustard and chili peppers generate pronounced oral thermosensations. Here we recorded responses in mouse trigeminal ganglion neurons to investigate interactions between thermal sensing and the active ingredients of these plants--menthol, allyl isothiocyanate (AITC), and capsaicin, respectively--at concentrations found in foods and commercial hygiene products. We carried out in vivo confocal calcium imaging of trigeminal ganglia in which neurons express GCaMP3 or GCAMP6s and recorded their responses to oral stimulation with thermal and the above chemesthetic stimuli. In the V3 (oral sensory) region of the ganglion, thermoreceptive neurons accounted for ~10% of imaged neurons. We categorized them into 3 distinct classes: cool-responsive and warm-responsive thermosensors, and nociceptors (responsive only to temperatures ≥43-45o). Menthol, AITC, and capsaicin also elicited robust calcium responses that differed markedly in their latencies and durations. Most of the neurons that responded to these chemesthetic stimuli were also thermosensitive. Capsaicin and AITC increased the numbers of warm-responding neurons and shifted the nociceptor threshold to lower temperatures. Menthol attenuated the responses in all classes of thermoreceptors. Our data show that while individual neurons may respond to a narrow temperature range (or even bimodally), taken collectively, the population is able to report on graded changes of temperature. Our findings also substantiate an explanation for the thermal sensations experienced when one consumes pungent spices or mint.


2018 ◽  
Vol 115 (3) ◽  
pp. 578-589 ◽  
Author(s):  
Adela Herraiz-Martínez ◽  
Anna Llach ◽  
Carmen Tarifa ◽  
Jorge Gandía ◽  
Verónica Jiménez-Sabado ◽  
...  

Abstract Aims Single nucleotide polymorphisms on chromosome 4q25 have been associated with risk of atrial fibrillation (AF) but the exiguous knowledge of the mechanistic links between these risk variants and underlying electrophysiological alterations hampers their clinical utility. Here, we tested the hypothesis that 4q25 risk variants cause alterations in the intracellular calcium homoeostasis that predispose to spontaneous electrical activity. Methods and results Western blotting, confocal calcium imaging, and patch-clamp techniques were used to identify mechanisms linking the 4q25 risk variants rs2200733T and rs13143308T to defects in the calcium homoeostasis in human atrial myocytes. Our findings revealed that the rs13143308T variant was more frequent in patients with AF and that myocytes from carriers of this variant had a significantly higher density of calcium sparks (14.1 ± 4.5 vs. 3.1 ± 1.3 events/min, P = 0.02), frequency of transient inward currents (ITI) (1.33 ± 0.24 vs. 0.26 ± 0.09 events/min, P < 0.001) and incidence of spontaneous membrane depolarizations (1.22 ± 0.26 vs. 0.56 ± 0.17 events/min, P = 0.001) than myocytes from patients with the normal rs13143308G variant. These alterations were linked to higher sarcoplasmic reticulum calcium loading (10.2 ± 1.4 vs. 7.3 ± 0.5 amol/pF, P = 0.01), SERCA2 expression (1.37 ± 0.13 fold, P = 0.03), and RyR2 phosphorylation at ser2808 (0.67 ± 0.08 vs. 0.47 ± 0.03, P = 0.01) but not at ser2814 (0.28 ± 0.14 vs. 0.31 ± 0.14, P = 0.61) in patients carrying the rs13143308T risk variant. Furthermore, the presence of a risk variant or AF independently increased the ITI frequency and the increase in the ITI frequency observed in carriers of the risk variants was exacerbated in those with AF. By contrast, the presence of a risk variant did not affect the amplitude or properties of the L-type calcium current in patients with or without AF. Conclusions Here, we identify the 4q25 variant rs13143308T as a genetic risk marker for AF, specifically associated with excessive calcium release and spontaneous electrical activity linked to increased SERCA2 expression and RyR2 phosphorylation.


2018 ◽  
Vol 139 ◽  
pp. 16-20 ◽  
Author(s):  
Hiroshi Onimaru ◽  
Shiro Nakamura ◽  
Keiko Ikeda ◽  
Kiyoshi Kawakami ◽  
Tomio Inoue

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Zheng ◽  
Xuefei Liu ◽  
Yulong Li ◽  
Kaushik P. Patel

Accumulated evidence indicates that obesity-induced type 2 diabetes (T2D) is associated with enhanced sympathetic activation. The present study was conducted to investigate the role for leptin-glutamate signaling within the hypothalamus in regulating sympathetic nerve activity. In anesthetized rats, microinjections of leptin (5 ng ~ 100 ng) into the arcuate nucleus (ARCN) and paraventricular nucleus (PVN) induced increases in renal sympathetic nerve activity (RSNA), blood pressure (BP), and heart rate (HR). Prior microinjections of NMDA receptor antagonist AP5 (16 pmol) into the ARCN or PVN reduced leptin-induced increases in RSNA, BP, and HR in both ARCN and PVN. Knockdown of a leptin receptor with siRNA inhibited NMDA-induced increases in RSNA, BP, and HR in the ARCN but not in the PVN. Confocal calcium imaging in the neuronal NG108 and astrocytic C6 cells demonstrated that preincubation with leptin induced an increase in intracellular calcium green fluorescence when the cells were challenged with glutamate. In high-fat diet and low-dose streptozotocin-induced T2D rats, we found that leptin receptor and NMDA NR1receptor expressions in the ARCN and PVN were significantly increased. In conclusion, these studies provide evidence that within the hypothalamic nuclei, leptin-glutamate signaling regulates the sympathetic activation. This may contribute to the sympathoexcitation commonly observed in obesity-related T2D.


Sign in / Sign up

Export Citation Format

Share Document