scholarly journals Characteristics of Spray Angle and Discharge Coefficient of Pressure-Swirl Atomizer

Author(s):  
Zulkifli Abdul Ghaffar ◽  
Salmiah Kasolang ◽  
Ahmad Hussein Abdul Hamid

A widely distributed spray is an important feature for an atomizer which is required in various applications such as gas cooling, gas turbine combustion, and fluidized bed granulator. Pressure-swirl atomizer is an example of atomizer which provides a wide spray angle through the swirling effect inside the atomizer. One of the important parameters affecting spray angle is atomizer geometrical constant, K. Another important parameter of pressure-swirl atomizer is discharge coefficient, Cd. Discharge coefficient describes the throughput of the liquid flow. An experimental test-rig was constructed to conduct the performance test of the atomizer. Acquired images were analysed using image-processing software. It was found that K has inverse relation with spray angle and direct relation with Cd. Prediction of spray angle and Cd using existing correlations also yields similar trends with the experimental results, but some parameters still need to be considered to perform an accurate prediction.

2020 ◽  
Vol 899 ◽  
pp. 22-28
Author(s):  
Zulkifli Abdul Ghaffar ◽  
Salmiah Kasolang ◽  
Ahmad Hussein Abdul Hamid ◽  
Mohd Syazwan Firdaus Mat Rashid

Air core is an important parameter in pressure swirl atomizer since formation of air core determines the thickness of the discharged liquid sheet and the effective flow area of nozzle discharge. This consequently will affect the coefficient of discharge and the spray angle. This study conducted for the investigation of the relation between dimensionless numbers on the air core diameter. Dimensionless numbers are helpful aid for the quantification of independent parameters involving atomizer design and operating conditions simultaneously. Reynolds number, Re and orifice-to-swirl chamber diameter ratio, N are the dimensionless numbers selected for this study. Despite of the availability of study on the effect of dimensionless numbers on air core diameter, more study requires especially for smaller N. An experimental test-rig was constructed to conduct the performance test of the atomizer. Acquired images were analyzed using image-processing software. It was found that N has more significant effect on the change of air core diameter compared to Re. However, it is observed that at Re = 40000, N = 0.07 produces almost similar air core diameter with N = 0.25 at Re < 20000. In contrast, with N = 0.5, air core diameter produces are larger even at Re < 20000. Hence, it can be concluded that both Re and N are important parameters in characterizing the air core diameter in pressure-swirl atomizer.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhengyan Guo ◽  
Yi Jin ◽  
Kai Zhang ◽  
Kanghong Yao ◽  
Yunbiao Wang ◽  
...  

Pressure swirl atomizers are widely used in gas turbine combustor; this paper is aimed at researching the effect of low ambient pressure (0.1 MPa to 0.01 MPa, lower than an atmosphere) on the spray cone angle of pressure swirl atomizer. The spray angle is captured by high-speed photography; then, an image post program is used to process the spray angle magnitude. A mathematical model of a single droplet’s movement and trajectory based on force analysis is proposed to validate the spray angle variation. The maximum variation of the spray cone angle, which is observed when fuel supply pressure drop through the atomizer is 1 MPa as the ambient pressure decreases from 0.1 MPa to 0.01 MPa, is found to be 23.9%. The experimental results show that the spray cone angle is expected to increase with the ambient pressure decrease; meanwhile, mathematical results agree well with this trend.


2011 ◽  
Vol 189-193 ◽  
pp. 31-37 ◽  
Author(s):  
Ji Liang Wu ◽  
De Yuan Zhang ◽  
Xing Gang Jiang

This paper analyzed the velocity field of the section between outlet orifice and the conical swirl chamber with a kind of single inlet pressure atomizer using CFD (Computational Fluid Dynamics) method. A method of modifying the outlet orifice position referring to the swirl chamber in order to improve the spray angle and its homogeneity is proposed. The result of the experiments shows that it is a feasible method to improve the quality of this kind of atomizer.


Author(s):  
D. R. Guildenbecher ◽  
R. R. Rachedi ◽  
P. E. Sojka

An experimental investigation was conducted to study the effects of increased ambient pressure (up to 6.89MPa) and increased nozzle pressure drop (up to 2.8MPa) on the cone angles for sprays produced by pressure-swirl atomizers having varying amounts of initial swirl. This study extends the classical results of DeCorso and Kemeny, (1957, “Effect of Ambient and Fuel Pressure on Nozzle Spray Angle,” ASME Transactions, 79(3), pp. 607–615). Shadow photography was used to measure cone angles at x∕D0=10, 20, 40, and 60. Our lower pressure results for atomizer swirl numbers of 0.50 and 0.25 are consistent with those of DeCorso and Kemeny, who observed a decrease in cone angle with an increase in nozzle pressure drop, ΔP, and ambient density, ρair, until a minimum cone angle was reached when ΔPρair1.6∼100MPa(kg∕m3)1.6 (equivalent to 200psi(lbm∕ft3)1.6). Results for atomizers having higher initial swirl do not match the DeCorso and Kemeny results as well, suggesting that their correlation be used with caution. Another key finding is that an increase in ΔPρair1.6 to a value of 600MPa(kg∕m3)1.6 leads to continued decrease in cone angle, but that a subsequent increase to 2000MPa(kg∕m3)1.6 has little effect on cone angle. Finally, there was little effect of nozzle pressure drop on cone angle, in contrast to findings of previous workers. These effects are hypothesized to be due to gas entrainment.


2007 ◽  
Vol 17 (6) ◽  
pp. 529-550 ◽  
Author(s):  
Seoksu Moon ◽  
Choongsik Bae ◽  
Essam F. Abo-Serie ◽  
Jaejoon Choi

2020 ◽  
Vol 32 (12) ◽  
pp. 127113
Author(s):  
Kiumars Khani Aminjan ◽  
Balaram Kundu ◽  
D. D. Ganji

2017 ◽  
Vol 42 (29) ◽  
pp. 18649-18657 ◽  
Author(s):  
Zhilin Liu ◽  
Yong Huang ◽  
Lei Sun

Author(s):  
Ahmadreza Abbasi Baharanchi ◽  
Seckin Gokaltun ◽  
Shahla Eshraghi

VOF Multiphase model is used to simulate the flow inside a pressure-swirl-atomizer. The capability of the Reynolds Stress Model and variants of the K-ε and K-ω models in modeling of turbulence has been investigated in the commercial computational fluid dynamics (CFD) software FLUENT 6.3. The Implicit scheme available in the volume-of-fluid (VOF) model is used to calculate the interface representation between phases. The atomization characteristics have been investigated as well as the influence of the inlet swirl strength of the internal flow. The numerical results have been successfully validated against experimental data available for the computed parameters. The performance of the RNG K-ε model was found to be satisfactory in reducing the computational cost and introducing an effective Weber number for the flow simulated in this study.


Sign in / Sign up

Export Citation Format

Share Document