thermodynamics modeling
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 728
Author(s):  
Per Söderlind ◽  
Emily E. Moore ◽  
Christine J. Wu

The high-temperature thermodynamical properties for the actinide monocarbides and mononitrides ThC, ThN, UC, UN, PuC, and PuN are calculated from first-principles electronic-structure theory. The electronic structure is modeled with density-functional theory (DFT) and is fully relativistic, including the spin-orbit interaction. Furthermore, the DFT is extended to account for orbital–orbital interactions, by means of a parameter-free orbital-polarization (OP) technique, that has proven to be essential for the 5f electrons in plutonium. Strong anharmonicity and the temperature dependence of the lattice vibrations are captured with the self-consistent ab initio lattice dynamics (SCAILD) method. The calculated free energies and heat capacities are compared to published results from quasi-harmonic (QH) theory, and experiments, where available. For the uranium and plutonium compounds, we make use of CALPHAD assessments to help evaluate the theory. Generally, our anharmonic relativistic approach compares well with both CALPHAD and experiments. For the thorium compounds, our theory is in good accord with QH modeling of the free energy at lower temperatures but for the heat capacity the comparison is less favorable.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Loubna Nasri

Development of processes using green solvents as supercritical fluids (SCFs) depends on the accuracy of modeling and predicting phase equilibrium which is of considerable importance to exploit the use of SCF process at the level of pharmaceutical industries. Solid-Fluid equilibrium modeling is associated to many drawbacks when compressed gas-based models as cubic equations of states (cEoSs) are used. The unavailability of experimental values of solute’s sublimation pressure presents one of the major obstacles to the solubility modeling with this type of models, and thus, its estimation is essential and inevitable. This work is an attempt to address a question regarding “accurate estimated value” of sublimation pressure of two antibiotics Penicillin G (benzyl penicillin) and Penicillin V (phenoxymethyl penicillin). Toward that, first, cEoSs are provided as the thermodynamics modeling framework and fundamental approach. Second, a discussion and a review of some literature results are given. Third, results are invoked to present a criticism analysis that comes from the use of modified form of Peng-Robinson (PR) equation of states. Finally, considerable improvement of modeling results by using a new sublimation pressure is shown.


2021 ◽  
Vol 7 ◽  
pp. 3688-3702
Author(s):  
Fatemeh Ahadi ◽  
Mohammad Azadi ◽  
Mojtaba Biglari ◽  
Seyed Navid Madani

2021 ◽  
Author(s):  
Xindong Wang ◽  
Xue Ke ◽  
Shuxia Zhang ◽  
Cheng Zhang ◽  
Hui Li ◽  
...  

Abstract Drilling operations is risky due to narrow mud weight windows in deep wells. Different type of drilling events and wellbore instability have encountered frequently including inflow, drilling induced tensile fractures (DITF), losses and connection gas etc. As such to mitigate the problems, a robust pore pressure prediction is necessary with requires an understanding of the origins and distribution of overpressures in the area. The technical research process is divided into three steps: pre-drill pore pressure predication (PPP) modelling, real-time monitoring and post-drill validation. Efforts were made to understand the geological settings and temperature model. A pore pressure predication (PPP) model was built by integrating fully coupled geomechanical with thermodynamics modeling. Real-time monitoring information provides references and guidelines for PPP model optimization. During the post-drill stage, the updated PPP model was used to design a mud weight and casing program for the upcoming wells. The study area is located northwestern China, the deep formations that more than 7000 meters are ultra-high temperature (200-220 deg C). Thermal-related secondary pore pressure generating mechanism may become active leading to higher overpressure and difficulties in prediction. For the case study, an empirical relationship of overpressure impact factors versus temperature of sandstone and mudstone was proposed. An accurate PPP model is generated using available well-scale geomechanical model and overpressure impact factors. With an integrating fully coupled PPP model as foundation, the integrated approach helps to reduce serious wellbore instability caused by abnormal formation pressure, wellbore collapse and other complex drilling problems deep wells. A1 well was safely drilled guided by the study result and has no significant wellbore instability issues and has minimum reservoir damage due to optimal mud weight program. These findings will provide reference for overpressure mechanics study of deep wells. The multidisciplinary study results have created value by improving drilling performance and well delivery efficiency. It can also help operator reduce drilling costs and make development plan decisions.


2021 ◽  
Vol 170 ◽  
pp. 105140
Author(s):  
Rogerio Favareto ◽  
Paulo Cardozo Carvalho de Araujo ◽  
Isaac Dias Bezerra ◽  
Andreia Fátima Zanette ◽  
Pedro Felipe Arce ◽  
...  

2021 ◽  
Author(s):  
M R. El-Aassar ◽  
F. M. Mohamed ◽  
I. H. Alsohaimia ◽  
R E. Khalifa

Abstract The present work verified the adsorption of hexavalent chromium (Cr (VI)) from synthetic aqueous solution using synthesized highly efficient low-cost adsorbent prepared from H2O2-modified olive seed residue solid waste/Anthracite/Chitosan (MOSR/An/CS) composite. Characteristics of the fabricated MOSR/An/CS composite were estimated by XRD, SEM, TGA, DSC, FT-IR, SBET and zeta potential tools. The entire chromium uptake study was conducted via batch adsorption mode under various operating conditions. Kinetics data were analyzed using five kinetic models, while empiric equilibrium data was fitted using three isotherms. The results clarified that Langmuir best described the adsorption of Cr (VI) ions with maximum monolayer coverage of 137.7 mg/g. Pseudo-first-order mode was nicely fitted the kinetics adsorption. Further, Elovich, intraparticle diffusion and Boyd models validates that more than one mechanism was contributed to the adsorption of Cr (VI). Besides, the estimated activation energy (Ea) and enthalpy (ΔH°) suggest the physical and endothermic nature of the adsorption process. The developed MOSR/An/Cs composite exhibited decent reusability after five sequential adsorption cycles and showed higher adsorption affinity towards Cr (VI) ions. MOSR / An / Cs composite could also be effectively used as an effective eco-friendly and recyclable sorbent for the elimination of Cr (VI) from wastewater.


Langmuir ◽  
2020 ◽  
Vol 36 (44) ◽  
pp. 13166-13180
Author(s):  
Ali Abbaspour Tamijani ◽  
Jennifer L. Bjorklund ◽  
Logan J. Augustine ◽  
Jeffrey G. Catalano ◽  
Sara E. Mason

Sign in / Sign up

Export Citation Format

Share Document