Passivity-based stability analysis of parallel single-phase inverters with hybrid reference frame control considering PLL effect

Author(s):  
Yang Han ◽  
Mengling Yang ◽  
Ping Yang ◽  
Lin Xu ◽  
Frede Blaabjerg
2019 ◽  
Vol 66 (7) ◽  
pp. 1212-1216 ◽  
Author(s):  
O. D. Montoya ◽  
A. Garces ◽  
S. Avila-Becerril ◽  
G. Espinosa-Perez ◽  
F. M. Serra

2019 ◽  
Vol 8 (4) ◽  
pp. 2814-2822

This paper projects a high performance decoupled current control using a dq synchronous reference frame for single-phase inverter. For the three-phase inverter the conversion from AC to DC with Proportional Integral controller grants to obtain steady state error for AC Voltages and currents but has a few challenges with the single-phase systems. Hence, an orthogonal pair (β) is created by shifting the phase by one quarter cycle with respect to the real component (α) which is needed for the transformation from stationary to rotating frame. The synchronous reference frame control theory helps in controlling the AC voltage by using DC signal as the reference with the proportional integrator controllers. The implementation of the control is done with two-stage converter with LCL filter for a single-phase photovoltaic system. A modified MPPT Incremental conductance algorithm along with decoupled current control helps in regulating the active and reactive power infused into the grid where the power factor is improved, the efficiency of the system is increased above 95% and total harmonic distortion for current is also reduced to3%. The results have been validated using MATLAB.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2250 ◽  
Author(s):  
Rui Wang ◽  
Qiuye Sun ◽  
Qifu Cheng ◽  
Dazhong Ma

This paper proposes an overall practical stability assessment for a multi-port single-phase solid-state transformer (MS3T) in the electromagnetic timescale. When multiple stable subsystems are combined into one MS3T, the newly formed MS3T has a certain possibility to be unstable. Thus, this paper discusses the stability assessment of the MS3T in detail. First and foremost, the structure of the MS3T and its three stage control strategies are proposed. Furthermore, the stability analysis of each of the MS3T’s subsystems is achieved through the closed loop transfer function of each subsystem, respectively, including an AC-DC front-end side converter, dual active bridge (DAB) with a high-frequency (HF) or medium-frequency (MF) transformer, and back-end side incorporating DC-AC and dc-dc converters. Furthermore, the practical impedance stability criterion in the electromagnetic timescale, which only requires two current sensors and one external high-bandwidth small-signal sinusoidal perturbation current source, is proposed by the Gershgorin theorem and Kirchhoff laws. Finally, the overall stability assessment, based on a modified impedance criterion for the MS3T is investigated. The overall practical stability assessment of the MS3T can be validated through extensive simulation and hardware results.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2035 ◽  
Author(s):  
Liang Chen ◽  
Heng Nian ◽  
Yunyang Xu

The sequence domain impedance modeling of wind turbines (WTs) has been widely used in the stability analysis between WTs and weak grids with high line impedance. An aggregated impedance model of the wind farm is required in the system-level analysis. However, directly aggregating WT small-signal impedance models will lead to an inaccurate aggregated impedance model due to the mismatch of reference frame definitions among different WT subsystems, which may lead to inaccuracy in the stability analysis. In this paper, we analyze the impacts of the reference frame mismatch between a local small-signal impedance model and a global one on the accuracy of aggregated impedance and the accuracy of impedance-based stability analysis. The results revealed that the impact is related to the power distribution of the studied network. It was found that that the influence of mismatch on stability analysis became subtle when subsystems were balanced loaded. Considering that balanced loading is a common configuration of the practical application, direct impedance aggregation by local small-signal models can be applied due to its acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document