boundary orientation
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Tomas Martin ◽  
siqi he ◽  
Alexander Warren ◽  
Hao Shang ◽  
David Knowles ◽  
...  

2021 ◽  
pp. 102154
Author(s):  
Xin Wang ◽  
Baolong Zheng ◽  
Kehang Yu ◽  
Sen Jiang ◽  
Enrique J. Lavernia ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Heng Ma ◽  
Pengcheng Li ◽  
Jiaming Hu ◽  
Xingya Cai ◽  
Qianling Song ◽  
...  

Human and nonhuman primates are good at identifying an object based on its motion, a task that is believed to be carried out by the ventral visual pathway. However, the neural mechanisms underlying such ability remains unclear. We trained macaque monkeys to do orientation discrimination for motion boundaries (MBs) and recorded neuronal response in area V2 with microelectrode arrays. We found 10.9% of V2 neurons exhibited robust orientation selectivity to MBs, and their responses correlated with monkeys’ orientation-discrimination performances. Furthermore, the responses of V2 direction-selective neurons recorded at the same time showed correlated activity with MB neurons for particular MB stimuli, suggesting that these motion-sensitive neurons made specific functional contributions to MB discrimination tasks. Our findings support the view that V2 plays a critical role in MB analysis and may achieve this through a neural circuit within area V2.


2021 ◽  
Vol 67 (3) ◽  
pp. 937-954
Author(s):  
Tuncay Yalçinkaya ◽  
İzzet Özdemir ◽  
İzzet Tarik Tandoğan

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 150
Author(s):  
Miao Wang ◽  
Yuguang Liu ◽  
Xiaomei Wang ◽  
Hang Xian ◽  
Wan-min Yang

A large drilled single domain SmBa2Cu3O7−δ (SmBCO) bulk superconductor with a diameter of 32 mm and different hole sizes was successfully fabricated using the modified top-seeded infiltration and growth (TSIG) process. The morphology, superconducting properties, and grain boundary orientation growth of the drilled SmBCO samples were investigated. It was found that not only are the properties of the drilled sample equivalent to those of normal SmBCO bulk superconductors, but also the NdBCO seed crystal can be well controlled because of the increase in the specific surface area in the solid phase pellet. In addition, the growth orientation along the tangent direction of the holes was first noticed in the drilled single domain SmBCO bulk superconductor. This conclusion is highly important for the accurate control of the growth temperature of high temperature bulk superconductors.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 909
Author(s):  
Zhongli Zhang ◽  
Can Wang ◽  
Xiaowen Hu ◽  
Yushan Ni

Nanoindentation on a platinum thin film with surface defects in a rectangular shape and triangular shape was simulated using the quasicontinuum method to study the shape effect of surface defects on nanohardness. The results show that the nanohardness of thin film with triangular defects is basically larger than those with rectangular defects, which is closely related to the height of the surface defects at the boundary near to the indenter. Moreover, the triangular defect might have an enhancement effect on nanohardness by a certain size of the defects and the boundary orientation of the defect, where such an enhancement effect increases as the defect grows. Furthermore, the nanohardness decreases when the defect is folded from wide to narrow in the same atom cavity, and particularly expresses a more obvious drop when the height of the defects increases. In addition, larger sizes of the rectangular defect induce more reduction in nanohardness, while the nanohardness of the triangular surface defect is sensitive to the periodic arrangement of atoms changed by the boundary orientation of the defect, which is well explained and demonstrated by the calculation formula theory of necessary load for dislocation emission.


Author(s):  
Tomas L. Martin ◽  
Siqi He ◽  
Alexander D. Warren ◽  
Hao Shang ◽  
David M. Knowles ◽  
...  

Abstract Cavity formation during creep of steels at high temperatures and stresses is closely related to the original and evolved microstructure, particularly the orientation between grains and precipitation at the grain boundaries. Understanding the initiation, growth and coalescence of creep cavities is critical to determining the operational life of components in high temperature, high stress environments such as an advanced gas-cooled nuclear reactor. However, accelerated laboratory-based testing frequently shows another kind of void within the microstructure, caused by plastic damage and ductile failure, particularly if a specimen fails during a test. This paper compares the type of voids and cavities observed in an AISI 316 stainless steel after extensive service in a gas-cooled nuclear reactor boiler header and after uniaxial creep testing of a similar material at higher stresses. The differences between the features observed and their potential mechanistic origins are discussed.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2238
Author(s):  
Jaber Rezaei Mianroodi ◽  
Bob Svendsen

The interplay of interface and bulk dislocation nucleation and glide in determining the motion of twin boundaries, slip-twin interaction, and the mechanical (i.e., stress-strain) behavior of fcc metals is investigated in the current work with the help of molecular dynamics simulations. To this end, simulation cells containing twin boundaries are subject to loading in different directions relative to the twin boundary orientation. In particular, shear loading of the twin boundary results in significantly different behavior than in the other loading cases, and in particular to jerky stress flow. For example, twin boundary shear loading along ⟨ 112 ⟩ results in translational normal twin boundary motion, twinning or detwinning, and net hardening. On the other hand, such loading along ⟨ 110 ⟩ results in oscillatory normal twin boundary motion and no hardening. As shown here, this difference results from the different effect each type of loading has on lattice stacking order perpendicular to the twin boundary, and so on interface partial dislocation nucleation. In both cases, however, the observed stress fluctuation and “jerky flow” is due to fast partial dislocation nucleation and glide on the twin boundary. This is supported by the determination of the velocity and energy barriers to glide for twin boundary partials. In particular, twin boundary partial edge dislocations are significantly faster than corresponding screws as well as their bulk counterparts. In the last part of the work, the effect of variable twin boundary orientation in relation to the loading direction is investigated. In particular, a change away from pure normal loading to the twin plane toward mixed shear-normal loading results in a transition of dominant deformation mechanism from bulk dislocation nucleation/slip, to twin boundary motion.


2019 ◽  
Vol 26 (1) ◽  
pp. 29-35
Author(s):  
Jinli Liu ◽  
Wenyuan Zheng ◽  
Huiqin Yin

AbstractA thin-walled copper (Cu)–tin (Sn) alloy cylinder was treated after spinning at 200–400°C for 0.5 h. The characteristics of the alloy microstructure under different temperatures were analyzed through electron back-scattered diffraction. The results were as follows. The grain size at 200–300°C decreases as the heat treatment temperature rises, but the grain size at 400°C increases. At 200–300°C, the microstructure primarily consists of deformed grains. It is found that the main reason for the formation of high-angle grain boundaries (HAGBs) is static recrystallization. For the grain boundary orientation differential, the low-angle sub-grain boundary gradually grows into the HAGB, and multiple annealing twin Σ9 boundaries appear. Grain orientation is generally random at any temperature range. The mechanical property test indicated that, at the upper critical recrystallization temperature of 300°C, the elongation of the Cu–Sn alloy gradually increases, and its yield strength and ultimate tensile strength rapidly decrease.


Sign in / Sign up

Export Citation Format

Share Document