wing imaginal disc
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ilse Hurbain ◽  
Anne-Sophie Macé ◽  
Maryse Romao ◽  
Elodie Prince ◽  
Lucie Sengmanivong ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ryo Hatori ◽  
Brent M Wood ◽  
Guilherme Oliveira Barbosa ◽  
Thomas B Kornberg

Morphogen signaling proteins disperse across tissues to activate signal transduction in target cells. We investigated dispersion of Hedgehog (Hh), Wnt homolog Wingless (Wg), and Bone morphogenic protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc. We discovered that delivery of Hh, Wg, and Dpp to their respective targets is regulated. We found that <5% of Hh and <25% of Wg are taken up by disc cells and activate signaling. The amount of morphogen that is taken up and initiates signaling did not change when the level of morphogen expression was varied between 50-200% (Hh) or 50-350% (Wg). Similar properties were observed for Dpp. We analyzed an area of 150 mm x 150 mm that includes Hh-responding cells of the disc as well as overlying tracheal cells and myoblasts that are also activated by disc-produced Hh. We found that the extent of signaling in the disc was unaffected by the presence or absence of the tracheal and myoblast cells, suggesting that the mechanism that disperses Hh specifies its destinations to particular cells, and that target cells do not take up Hh from a common pool.


2020 ◽  
Author(s):  
Raphaël Bonche ◽  
Aline Chessel ◽  
Séverine Boisivon ◽  
Prune Smolen ◽  
Pascal Thérond ◽  
...  

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev195974
Author(s):  
Ryo Hatori ◽  
Thomas B. Kornberg

ABSTRACTHedgehog (Hh) is an evolutionarily conserved signaling protein that has essential roles in animal development and homeostasis. We investigated Hh signaling in the region of the Drosophila wing imaginal disc that produces Hh and is near the tracheal air sac primordium (ASP) and myoblasts. Hh distributes in concentration gradients in the anterior compartment of the wing disc, ASP and myoblasts, and activates genes in each tissue. Some targets of Hh signal transduction are common to the disc, ASP and myoblasts, whereas others are tissue-specific. Signaling in the three tissues is cytoneme-mediated and cytoneme-dependent. Some ASP cells project cytonemes that receive both Hh and Branchless (Bnl), and some targets regulated by Hh signaling in the ASP are also dependent on Bnl signal transduction. We conclude that the single source of Hh in the wing disc regulates cell type-specific responses in three discreet target tissues.


2020 ◽  
Author(s):  
Ryo Hatori ◽  
Thomas B. Kornberg

AbstractMorphogen signaling proteins disperse across tissues to activate signal transduction in target cells. We investigated dispersion of Hedgehog (Hh), Wingless (Wg), and Bone morphogenic protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc, and found that delivery to targets is regulated. Cells take up <5% Hh produced, and neither amounts taken up nor extent of signaling changes under conditions of Hh production from 50-200% normal amounts. Similarly, cells take up <25% Wg produced, and variation in Wg production from 50-700% normal has no effect on amounts taken up or signaling. Similar properties were observed for Dpp. Wing disc-produced Hh signals to disc-associated tracheal and myoblast as well as an approximately equal number of disc cells, but the extent of signaling in the disc is unaffected by the presence or absence of the tracheal cells and myoblasts. These findings show that target cells do not take up signaling proteins from a common pool and that both the amount and destination of delivered morphogens are regulated..SummaryThe extent of Hh, Wg, and Dpp signaling is independent of the amount of signal produced or the number of recipient cells.


2020 ◽  
Author(s):  
Ryo Hatori ◽  
Thomas B. Kornberg

AbstractHedgehog (Hh) is an evolutionarily conserved signaling protein that has essential roles in animal development and homeostasis. We investigated Hh signaling in the region of the Drosophila wing imaginal disc that produces Hh and is near the tracheal air sac primordium (ASP) and myoblasts. Hh distributes in concentration gradients in the wing disc anterior compartment, ASP, and myoblasts and activates different sets of genes in each tissue. Some transcriptional targets of Hh signal transduction are common to the disc, ASP, and myoblasts, whereas others are tissue-specific. Signaling in the three tissues is cytoneme-mediated and cytoneme-dependent. We conclude that a single source of Hh in the wing disc regulates cell type-specific responses in three discreet target tissues.SummaryHedgehog produced by the wing imaginal disc signals to wing disc, myoblast and tracheal cells


2019 ◽  
Author(s):  
Sebastian Duncan ◽  
Samuel Delage ◽  
Alexa Chioran ◽  
Olga Sirbu ◽  
Theodore J. Brown ◽  
...  

AbstractThe assembly of basement membranes (BMs) into tissue-specific morphoregulatory structures requires non-core BM components. Work in Drosophila indicates a principal role of collagen-binding matricellular glycoprotein SPARC (Secreted Protein, Acidic, Rich in Cysteine) in larval fat body BM assembly. We report that SPARC and collagen IV (Col(IV)) first colocalize in the trans-Golgi of hemocytes. Mutating the collagen-binding epitopes of SPARC leads to 2nd instar larval lethality, indicating that SPARC binding to Col(IV) is essential for survival. Analysis of this mutant reveals increased Col(IV) puncta within adipocytes and intense perimeter Col(IV) staining surrounding the fat body as compared to wild-type larvae, reflecting a disruption in chaperone-like activity. In addition, Col(IV) in the wing imaginal disc was absent. Removal of the disulfide bridge in EF-hand2, which is known to enhance Col(IV) binding by SPARC, did not lead to larval lethality; however, a similar but less intense fat body phenotype was observed. Additionally, both SPARC mutants have altered fat body BM pore topography. Wing imaginal disc-derived SPARC did not localize within Col(IV)-rich matrices, indicating a distinct variant. Collectively, these data demonstrate the essential role of Col(IV) chaperone-like activity of SPARC to Drosophila development and indicate tissue-specific variants with differential functions.


Sign in / Sign up

Export Citation Format

Share Document