microplitis croceipes
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 2)

H-INDEX

27
(FIVE YEARS 0)

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1817
Author(s):  
Matthew Burrows ◽  
Tolulope Morawo ◽  
Henry Fadamiro

Background: Parasitic wasps (parasitoids) use volatile organic compounds released by herbivore-infested plants to locate their hosts. Response of parasitoids to plant odors may be plastic and dependent on their physiological state. Using Microplitis croceipes (Hymenoptera: Braconidae), a relatively specialized larval endoparasitoid of Heliothis virescens (Lepidoptera: Noctuidae), we asked whether age and mating status of parasitoids affect their olfactory response to host-related odors. Methods: Four odor stimuli of varying complexity were selected based on previous reports of parasitoid response to cotton volatiles: cis-3-hexenol (a green leaf volatile), α-pinene (a constitutive monoterpene), a 50/50 v/v binary mixture (cis-3-hexenol + α-pinene), and H. virescens-infested cotton odors. Female M. croceipes used in Y-tube olfactometer bioassays were either mated or unmated, and grouped 1–3, 4–6, and 7–9 d-old. Female parasitoids used in electroantennogram (EAG) recording were mated and grouped 1–3, 4–6, 7–9 and 10–12 d-old. Results: In Y-tube olfactometer bioassays, neither age nor mating status played a major role in the attraction of parasitoids to test odor stimuli, with two exceptions: 4–6 d-old mated parasitoids showed attraction to the binary mixture, and 1–3 d-old mated parasitoids showed attraction to H. virescens-infested cotton. Age did not affect EAG response of parasitoids to test stimuli. Conclusions: The present results suggest that age and mating status do not play a major role in modulating olfactory responses of M. croceipes to host-related plant odors. Instead, plasticity of olfactory response may be limited in M. croceipes due to strong innate sensitivity to host-related odor cues.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1817
Author(s):  
Matthew Burrows ◽  
Tolulope Morawo ◽  
Henry Fadamiro

Background: Parasitic wasps (parasitoids) use volatile organic compounds released by herbivore-infested plants to locate their hosts. Response of parasitoids to plant odors may be plastic and dependent on their physiological state. Using Microplitis croceipes (Hymenoptera: Braconidae), a relatively specialized larval endoparasitoid of Heliothis virescens (Lepidoptera: Noctuidae), we asked whether age and mating status of parasitoids affect their olfactory response to host-related odors. Methods: Four odor stimuli of varying complexity were selected based on previous reports of parasitoid response to cotton volatiles: cis-3-hexenol (a green leaf volatile), α-pinene (a constitutive monoterpene), a 50/50 v/v binary mixture (cis-3-hexenol + α-pinene), and H. virescens-infested cotton odors. Female M. croceipes used in Y-tube olfactometer bioassays were either mated or unmated, and grouped 1–3, 4–6, and 7–9 d-old. Female parasitoids used in electroantennogram (EAG) recording were mated and grouped 1–3, 4–6, 7–9 and 10–12 d-old. Results: In Y-tube olfactometer bioassays, neither age nor mating status played a major role in the attraction of parasitoids to test odor stimuli, with two exceptions: 4–6 d-old mated parasitoids showed attraction to the binary mixture, and 1–3 d-old mated parasitoids showed attraction to H. virescens-infested cotton. Age did not affect EAG response of parasitoids to test stimuli. Conclusions: The present results suggest that age and mating status do not play a major role in modulating olfactory responses of M. croceipes to host-related plant odors. Instead, plasticity of olfactory response may be limited in M. croceipes due to strong innate sensitivity to host-related odor cues.


F1000Research ◽  
2017 ◽  
Vol 5 ◽  
pp. 2725 ◽  
Author(s):  
Tolulope Morawo ◽  
Matthew Burrows ◽  
Henry Fadamiro

Herbivores emit volatile organic compounds (VOCs) after feeding on plants. Parasitoids exploit these VOCs as odor cues to locate their hosts. In nature, host-related odors are emitted as blends of various compounds occurring in different proportions, and minor blend components can sometimes have profound effects on parasitoid responses. In a previous related study, we identified and quantified VOCs emitted by cotton plant-fed Heliothis virescens (Lepidoptera: Noctuidae) larvae, an herbivore host of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). In the present study, the olfactory response of female M. croceipes to synthetic versions of 15 previously identified compounds was tested in electroantennogram (EAG) bioassays. Using M. croceipes as a model species, we further asked the question: does the relative abundance of a volatile compound match the level of antennal response in parasitoids? Female M. croceipes showed varying EAG responses to test compounds, indicating different levels of bioactivity in the insect antenna. Eight compounds, including decanal, 1-octen-3-ol, 3-octanone, 2-ethylhexanol, tridecane, tetradecane, α-farnesene and bisabolene, elicited EAG responses above or equal to the 50th percentile rank of all responses. Interestingly, decanal, which represented only 1% of the total amount of odors emitted by cotton-fed hosts, elicited the highest (0.82 mV) EAG response in parasitoids. On the other hand, (E)-β-caryophyllene, the most abundant (29%) blend component, elicited a relatively low (0.17 mV) EAG response. The results suggest that EAG response to host-related volatiles in parasitoids is probably more influenced by the ecological relevance or functional role of the compound in the blend, rather than its relative abundance.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2725 ◽  
Author(s):  
Tolulope Morawo ◽  
Matthew Burrows ◽  
Henry Fadamiro

Herbivores emit volatile organic compounds (VOCs) after feeding on plants. Parasitoids exploit these VOCs as odor cues to locate their hosts. In nature, host-related odors are emitted as blends of various compounds occurring in different proportions, and minor blend components can sometimes have profound effects on parasitoid responses. In a previous related study, we identified and quantified VOCs emitted by cotton plant-fed Heliothis virescens (Lepidoptera: Noctuidae) larvae, an herbivore host of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). In the present study, the olfactory response of female M. croceipes to synthetic versions of 15 previously identified compounds was tested in electroantennogram (EAG) bioassays. Using M. croceipes as a model species, we further asked the question: does the relative abundance of a volatile compound match the level of antennal response in parasitoids? Female M. croceipes showed varying EAG responses to test compounds, indicating different levels of bioactivity in the insect antenna. Eight compounds, including decanal, 1-octen-3-ol, 3-octanone, 2-ethylhexanol, tridecane, tetradecane, α-farnesene and bisabolene, elicited EAG responses above or equal to the 50th percentile rank of all responses. Interestingly, decanal, which represented only 1% of the total amount of odors emitted by cotton-fed hosts, elicited the highest (0.82 mV) EAG response in parasitoids. On the other hand, (E)-β-caryophyllene, the most abundant (29%) blend component, elicited a relatively low (0.17 mV) EAG response. The results suggest that EAG response to host-related volatiles in parasitoids is probably more influenced by the ecological relevance or functional role of the compound in the blend, rather than its relative abundance.


Sign in / Sign up

Export Citation Format

Share Document