polysome stability
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sana Parveen ◽  
Haripriya Parthasarathy ◽  
Dhiviya Vedagiri ◽  
Divya Gupta ◽  
Hitha Gopalan Nair ◽  
...  

Regulation of protein translation occurs primarily at the level of initiation and is mediated by multiple signaling pathways, majorly mechanistic target of rapamycin complex 1 (mTORC1), mitogen-activated protein kinases (MAPKs), and the eukaryotic translation initiation factor eIF2. While mTORC1 and eIF2α influence the polysome stability, MAPKs influence the phosphorylation of the cap-binding protein eIF4E and are known to influence translation of only a small set of mRNAs. Here, we demonstrate that p38 MAPK and ERK1/2 regulate translation through integrated stress response (ISR) pathways. Dual inhibition (dual-Mi) of p38 MAPK and ERK1/2 caused substantial phosphorylation of eIF2α in a synergistic manner, resulting in near-absolute collapse of polysomes. This regulation was independent of Mnk1/2, a well-studied mediator of translation regulation by the MAPKs. Dual-Mi-induced polysome dissociation was far more striking than that caused by sodium arsenite, a strong inducer of ISR. Interestingly, induction of ISR caused increased p38 phosphorylation, and its inhibition resulted in stronger polysome dissociation, indicating the importance of p38 in the translation activities. Thus, our studies demonstrate a major, unidentified role for ERK1/2 and more particularly p38 MAPK in the maintenance of homeostasis of polysome association and translation activities.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Fernanda C. S. Lupinacci ◽  
Elisa N. Ferreira ◽  
Martin Roffe ◽  
Hermano M. Bellato ◽  
Dirce M. Carraro ◽  
...  
Keyword(s):  

2008 ◽  
Vol 82 (12) ◽  
pp. 5847-5859 ◽  
Author(s):  
Brian J. Kempf ◽  
David J. Barton

ABSTRACT Poliovirus (PV) 2A protease (2APro) cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI and eIF4GII) within virus-infected cells, effectively halting cap-dependent mRNA translation. PV mRNA, which does not possess a 5′ cap, is translated via cap-independent mechanisms within viral protease-modified messenger ribonucleoprotein (mRNP) complexes. In this study, we determined that 2APro activity was required for viral polysome formation and stability. 2APro cleaved eIF4GI and eIF4GII as PV polysomes assembled. A 2ACys109Ser (2APro with a Cys109Ser mutation) protease active site mutation that prevented cleavage of eIF4G coordinately inhibited the de novo formation of viral polysomes, the stability of viral polysomes, and the stability of PV mRNA within polysomes. 2ACys109Ser-associated defects in PV mRNA and polysome stability correlated with defects in PV mRNA translation. 3CPro activity was not required for viral polysome formation or stability. 2APro-mediated cleavage of eIF4G along with poly(rC) binding protein binding to the 5′ terminus of uncapped PV mRNA appear to be concerted mechanisms that allow PV mRNA to form mRNP complexes that evade cellular mRNA degradation machinery.


1968 ◽  
Vol 110 (4) ◽  
pp. 783-788 ◽  
Author(s):  
A. W. Pronczuk ◽  
B. S. Baliga ◽  
H. N. Munro

The effects of different concentrations of ATP, GTP, UTP and CTP on polysome stability and function in a cell-free protein-synthesizing system prepared from rat liver were studied. Increasing the concentration of ATP in the incubation medium to 15mm resulted in progressive disaggregation of the polysomes; at ATP concentrations above 2mm their capacity to incorporate amino acids into peptide chains diminished. The same disaggregation phenomenon could be produced by incubating polysomes in a buffered medium containing 5mm-Mg2+ and increasing concentrations of ATP. Although the disaggregating action of ATP could be prevented by increasing Mg2+ concentration, the amino acid incorporation in the cell-free protein-synthesizing system remained impaired. The effects of different concentrations of GTP, UTP and CTP on polysome stability were similar to those of ATP. Increasing the concentrations of each nucleoside triphosphate also inhibited the hydrolysis of GTP in the cell-free protein-synthesizing system.


Sign in / Sign up

Export Citation Format

Share Document