tip separation vortex
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Like Wang ◽  
Jinling Lu ◽  
Weili Liao ◽  
Pengcheng Guo ◽  
Guojun Zhu ◽  
...  

Vibration characteristic is an important factor in evaluating operation stability of centrifugal pump. The vibration of main shaft was measured using a laser vibrometer, internal flow field was simulated via the shear stress transport turbulence model, and distribution law of vibration and pressure fluctuation in the impeller were analysed to explore the induction factor of vibration and the inherent relationship with pressure fluctuation in a semi-open centrifugal pump under low flow rate condition. Results of the numerical simulation are consistent with the experimental data. In addition to rotation frequency caused by impeller rotation, vibration frequency also includes characteristic frequency with high amplitude induced by unstable flow. The complex vortex in the impeller is composed of tip leakage vortex (TLV), reverse flow vortex, passage vortex and tip separation vortex. The primary tip leakage vortex (PTLV) formed by the streamline spills from 0 to 0.2λ where λ is the dimensionless distance from leading edge to trailing edge collides with tip leakage flow, the leading edge overflow and reverse flow vortex at the frequency of 1.6 fn ( fn is the rotating frequency) and 2.2 fn appear, respectively. The tip separation vortex formed in the tip clearance induced a frequency of 1.2 fn. The frequency of unstable flow phenomenon was consistent with the vibration frequency of main shaft, which induced the vibration of centrifugal pump.


Author(s):  
Haohao Wang ◽  
Lei Zhao ◽  
Limin Gao ◽  
Yongzeng Li ◽  
Chi Ma

Abstract This paper deals with the numerical simulation of a passive control technology to increase the performance of the first rotor in a counter-rotating axial compressor. The objective is to extend the stable operating range of an axial compressor rotor using blade tip fillet structure that located on the blade tip pressure side. Firstly, the behavior of the tip leakage flow is investigated for the compressor rotor without passive treatment. The simulations show the loading of blade tip increases as the mass flow rate decreases, which pushed the location of tip leakage vortex and tip separation vortex forward to leading edge. A blockage in the rotor blade passage is also observed at near stall conditions. Then, a rotor blade tip fillet structure (TFS) is tested in order to control leakage flow in the tip region. Steady calculations were conducted to investigate the impact of TFS on the performance of the compressor rotor. The results show that TFS could extend the operating range with no penalty for efficiency when the fillet structure located on the blade tip pressure side. The flow control mechanisms of tip leakage flow are that TFS has a good ability to weaken the tip separation vortex and make the tip leakage vortex closer to the blade suction surface compared to origin rotor blade. It is founded that TFS may lead to a increase of leakage flow mass rate near tip clearance region that resulted in the addition of mixing loss. It is significant to obtain a balance between the benefits of weakening the tip separation vortex and the damage of mixing loss.


Author(s):  
Simin Shen ◽  
Zhongdong Qian ◽  
Bin Ji ◽  
Ramesh K Agarwal

The effects of varying tip clearance widths on tip flows dynamics and main flows characteristics for an axial-flow pump are studied employing computational fluid dynamics method. An analysis is presented for the distributions of turbulent kinetic energy, mean axial velocity, and mean vorticity magnitude at the specific flow rate of 0.7 Q BEP , focusing on flow patterns in the tip region with different tip clearance widths and associated flows. From the simulation results we find that the flow structure of tip vortex and its transportation strongly depend on the tip clearance width, especially for the extension of tip leakage vortex, appearance of induced vortex and the area of tip separation vortex. For a small clearance of 0.15 mm at 0.7 Q BEP, there is no tip separation vortex at the tip. When tip clearance width becomes larger, a tip separation vortex attaches more on the surface of blade tip as well as vortex intensity of tip flows increases. For tip clearances of 0.9 and 1.2 mm, there is a small part of induced vortex near the blade leading edge. Meanwhile, no induced vortex can be captured for tip clearances of 0.15 and 0.45 mm. The relative angle between the blade chord and tip leakage vortex trajectory reduces gradually when tip clearance width increases from 0.45 to 1.2 mm. Additionally, the radial position of tip leakage vortex core moves inwards as tip clearance width increases. Furthermore, a larger tip clearance width has greater effects on the main-stream characteristics especially near the shroud, which is due to more energy being exchanged between tip flows and main flows. At the flow rate 0.7 Q BEP, both the efficiency and head of the pump reduce with an increasing tip clearance because of greater energy loss.


Sign in / Sign up

Export Citation Format

Share Document