Numerical investigation on vibration and pressure fluctuation characteristics in a centrifugal pump under low flow rate

Author(s):  
Like Wang ◽  
Jinling Lu ◽  
Weili Liao ◽  
Pengcheng Guo ◽  
Guojun Zhu ◽  
...  

Vibration characteristic is an important factor in evaluating operation stability of centrifugal pump. The vibration of main shaft was measured using a laser vibrometer, internal flow field was simulated via the shear stress transport turbulence model, and distribution law of vibration and pressure fluctuation in the impeller were analysed to explore the induction factor of vibration and the inherent relationship with pressure fluctuation in a semi-open centrifugal pump under low flow rate condition. Results of the numerical simulation are consistent with the experimental data. In addition to rotation frequency caused by impeller rotation, vibration frequency also includes characteristic frequency with high amplitude induced by unstable flow. The complex vortex in the impeller is composed of tip leakage vortex (TLV), reverse flow vortex, passage vortex and tip separation vortex. The primary tip leakage vortex (PTLV) formed by the streamline spills from 0 to 0.2λ where λ is the dimensionless distance from leading edge to trailing edge collides with tip leakage flow, the leading edge overflow and reverse flow vortex at the frequency of 1.6 fn ( fn is the rotating frequency) and 2.2 fn appear, respectively. The tip separation vortex formed in the tip clearance induced a frequency of 1.2 fn. The frequency of unstable flow phenomenon was consistent with the vibration frequency of main shaft, which induced the vibration of centrifugal pump.

2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


2021 ◽  
pp. 1-54
Author(s):  
Subhra Shankha Koley ◽  
Huang Chen ◽  
Ayush Saraswat ◽  
Joseph Katz

Abstract This experimental study characterizes the interactions of axial casing grooves with the flow in the tip region of an axial turbomachine. The tests involve grooves with the same inlet overlapping with the rotor blade leading edge, but with different exit directions located upstream. Among them, U grooves, whose circumferential outflow opposes the blade motion, achieve a 60% reduction in stall flowrate, but degrade the efficiency around the best efficiency point (BEP) by 2%. The S grooves, whose outlets are parallel to the blade rotation, improve the stall flowrate by only 36%, but do not degrade the BEP performance. To elucidate the mechanisms involved, stereo-PIV measurements covering the tip region and interior of grooves are performed in a refractive index matched facility. At low flow rates, the inflow into both grooves, which peaks when they are aligned with the blade pressure side, rolls up into a large vortex that lingers within the groove. By design, the outflow from S grooves is circumferentially positive. For the U grooves, fast circumferentially negative outflow peaks at the base of each groove, causing substantial periodic variations in the flow angle near the blade leading edge. At BEP, interactions with both grooves become milder, and most of the tip leakage vortex remains in the passage. Interactions with the S grooves are limited hence they do not degrade the efficiency. In contrast, the inflow into and outflow from the U grooves reverses direction, causing entrainment of secondary flows, which likely contribute to the reduced BEP efficiency.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1192
Author(s):  
Xiaohui Wang ◽  
Kailin Kuang ◽  
Zanxiu Wu ◽  
Junhu Yang

Pump as turbines (PATs) are widely applied for recovering the dissipated energy of high-pressure fluids in several hydraulic energy resources. When a centrifugal pump operates as turbine, the large axial vortex occurs usually within the impeller flow passages. In view of the structure and evolution of the vortex, and its effect on pressure fluctuation and energy conversion of the machine, a PAT with specific-speed 9.1 was analyzed based on detached eddy simulation (DES), and the results showed that vortices generated at the impeller inlet region, and the size and position of detected vortices, were fixed as the impeller rotated. However, the swirling strength of vortex cores changed periodically with double rotational frequency. The influence of vortices on pressure fluctuation of PAT was relatively obvious, deteriorating the operating stability of the machine evidently. In addition, the power loss near impeller inlet region was obviously heavy as the impact of large axial vortices, which was much more serious in low flow rate conditions. The results are helpful to realize the flow field of PAT and are instructive for blade optimization design.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
D. Tate Fanning ◽  
Steven E. Gorrell ◽  
Daniel Maynes ◽  
Kerry Oliphant

Inducers are used as a first stage in pumps to minimize cavitation and allow the pump to operate at lower inlet head conditions. Inlet flow recirculation or backflow in the inducer occurs at low flow conditions and can lead to instabilities and cavitation-induced head breakdown. Backflow of an inducer with a tip clearance (TC) of τ = 0.32% and with no tip clearance (NTC) is examined with a series of computational fluid dynamics simulations. Removing the TC eliminates tip leakage flow; however, backflow is still observed. In fact, the NTC case showed a 37% increase in the length of the upstream backflow penetration. Tip leakage flow does instigate a smaller secondary leading edge tip vortex that is separate from the much larger backflow structure. A comprehensive analysis of these simulations suggests that blade inlet diffusion, not tip leakage flow, is the fundamental mechanism leading to the formation of backflow.


2018 ◽  
Vol 38 (2) ◽  
pp. 527-543 ◽  
Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Zhiwei Li ◽  
Ao Xu ◽  
Chang Xu ◽  
...  

To provide a comprehensive understanding of the pressure fluctuation–vortex interaction in non-cavitation and cavitation flow, in this article, the unsteady flow in an ultra-low specific-speed centrifugal pump was investigated by numerical simulation. The uncertainty of the numerical framework with three sets of successively refined mesh was verified and validated by a level of 1% of the experimental results. Then, the unsteady results indicate that the features of the internal flow and the pressure fluctuation were accurately captured in accordance with the closed-loop experimental results. The detailed pressure fluctuation at 16 monitoring points and the monitoring of the vorticity suggest that some inconsistent transient phenomena in frequency spectrums show strong correlation with the evolution of vortex, such as abnormal increasing amplitudes at the monitoring points near to the leading edge on the suction surface and the trailing edge on the pressure surface in the case of lower pressurization capacity of impeller after cavitation. Further analysis applies the relative vortex transport equation to intuitionally illustrate the pressure fluctuation–vortex interaction by the contribution of baroclinic torque, viscous diffusion and vortex convection terms. It reveals that the effect of viscous diffusion is weak when the Reynolds number is much greater than 1. Pressure fluctuation amplitude enlarges on the suction side of blade near to the leading edge due to the baroclinic torque in cavitation regions, whereas the abnormal increase of pressure fluctuation after cavitation on the pressure surface of blade approaching the trailing edge results from the vortex convection during vortices moving downstream with the decrease of available net positive suction head at the same instance.


1960 ◽  
Vol 64 (599) ◽  
pp. 668-672 ◽  
Author(s):  
T. W. F. Moore

Summary:The results of experiments on the reattachment of a laminar boundary layer, separating from a rearward facing step in a flat plate aerofoil, are correlated with the properties of the short leading edge bubble which forms on thin aerofoils near the stall.The experiments, comprising pressure measurements, Pitot explorations, liquid film and smoke studies, indicate that for all Reynolds numbers above the value given by the Owen-KIanfer criterion the reattachment is turbulent behind a stationary air reverse flow vortex bubble. It is also found that the reattachment is laminar for Reynolds numbers below the critical, which further supports Crabtree's interpretation of the Owen-KIanfer criterion in terms of the condition for the growth of turbulent bursts.


2002 ◽  
Vol 2002.55 (0) ◽  
pp. 129-130
Author(s):  
Masahiro ISHIDA ◽  
Taufan SURANA ◽  
Tetsuhiro FUKUNAGA ◽  
Daisaku SAKAGUCHI ◽  
Zi xiang SUN

2005 ◽  
Vol 127 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Mashiro Ishida ◽  
Taufan Surana ◽  
Hironobu Ueki ◽  
Daisaku Sakaguchi

The effects of the inlet recirculation arrangement on inducer stall and the diffuser width on diffuser stall in a high-specific-speed-type centrifugal impeller with inducer were analyzed by numerical simulation and also verified experimentally. It was found that the incipient unstable flow occurs due to a rolling-up vortex flow, resulting from an interaction between the tip leakage flow and the reverse flow accumulated at the pressure side immediately downstream of the inducer tip throat, in which a strong streamwise component of vorticity is included. By forming the inlet recirculation flow, the tip leakage vortex is effectively sucked into the suction ring groove, and the flow incidence is decreased simultaneously. The unstable flow range of the test blower was reduced significantly by about 45% without deteriorating the impeller characteristics by implementing optimally both the ring groove arrangement and the narrowed diffuser width.


Author(s):  
M. Abramian ◽  
J. H. G. Howard ◽  
P. Hermann

The flow field within an axial flow inducer pump near the blade leading edge was explored by laser-Doppler velocimetry to extend the previous studies of the recirculation zone which is observed at low flow rates. Although a considerable region of upstream reverse flow and swirl was observed, the recirculation zone within the impeller was of limited axial extent and was confined to the pressure side of the passage. In an attempt to reduce the flow reversal, a series of perforated disks were placed in front of the inducer. The optimum disk geometry produced minor changes in the pump performance. LDV measurements of the flow field ahead and behind the disk showed considerable reduction of the swirl velocity under reverse flow conditions, with the observed upstream swirl opposite to the inducer rotation.


Sign in / Sign up

Export Citation Format

Share Document