Influence of Blade Tip Fillet Structure on Aerodynamic Performance of a Compressor Rotor

Author(s):  
Haohao Wang ◽  
Lei Zhao ◽  
Limin Gao ◽  
Yongzeng Li ◽  
Chi Ma

Abstract This paper deals with the numerical simulation of a passive control technology to increase the performance of the first rotor in a counter-rotating axial compressor. The objective is to extend the stable operating range of an axial compressor rotor using blade tip fillet structure that located on the blade tip pressure side. Firstly, the behavior of the tip leakage flow is investigated for the compressor rotor without passive treatment. The simulations show the loading of blade tip increases as the mass flow rate decreases, which pushed the location of tip leakage vortex and tip separation vortex forward to leading edge. A blockage in the rotor blade passage is also observed at near stall conditions. Then, a rotor blade tip fillet structure (TFS) is tested in order to control leakage flow in the tip region. Steady calculations were conducted to investigate the impact of TFS on the performance of the compressor rotor. The results show that TFS could extend the operating range with no penalty for efficiency when the fillet structure located on the blade tip pressure side. The flow control mechanisms of tip leakage flow are that TFS has a good ability to weaken the tip separation vortex and make the tip leakage vortex closer to the blade suction surface compared to origin rotor blade. It is founded that TFS may lead to a increase of leakage flow mass rate near tip clearance region that resulted in the addition of mixing loss. It is significant to obtain a balance between the benefits of weakening the tip separation vortex and the damage of mixing loss.

Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang

A low speed axial compressor with casing treatment of axial slots was numerically investigated. Time-accurate numerical calculations were performed to simulate unsteady flow in the rotor tip region and the effects of casing treatment on the flow. Since the compressor rotor had a large tip clearance, it was found that the tip leakage flow had an inherent unsteady feature that was not associated with rotor rotation. The unsteadiness of the tip leakage flow was induced by changes in the blade loading due to the pressure distribution formed by the tip leakage flow. This characteristic is called rotating instability or self-induced unsteadiness. The frequency of the flow oscillation was found to decrease as the flow rate was reduced. On the other hand, as expected, the operating range was improved by casing treatment, as shown by calculations in good agreement with the experimentally measured data. The unsteadiness of the tip leakage flow was alleviated by the casing treatment. The interaction between the flow in the tip region and the re-circulated flow through the axial slots was observed in detail. The removal and injection of flow through the axial slots were responsible not only for the extension of the operating range but also for the alleviation of the unsteadiness. Analyses of instantaneous flow fields explained the mechanism of the interaction between the casing treatment and the unsteady oscillation of the tip leakage flow. Furthermore, the effects of changes in the amount of re-circulation and the location of the removal and injection flow on the unsteadiness of the tip leakage flow were examined.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Young-Jin Jung ◽  
Tae-Gon Kim ◽  
Minsuk Choi

This paper addresses the effect of the recessed blade tip with and without a porous material on the performance of a transonic axial compressor. A commercial flow solver was employed to analyze the performance and the internal flow of the axial compressor with three different tip configurations: reference tip, recessed tip and recessed tip filled with a porous material. It was confirmed that the recessed blade tip is an effective method to increase the stall margin in an axial compressor. It was also found in the present study that the strong vortex formed in the recess cavity on the tip pushed the tip leakage flow backward and weakened the tip leakage flow itself, consequently increasing the stall margin without any penalty of the efficiency in comparison to the reference tip. The recessed blade tip filled with a porous material was suggested with hope to obtain the larger stall margin and the higher efficiency. However, it was found that a porous material in the recess cavity is unfavorable to the performance in both the stall margin and the efficiency. An attempt has been made to explain the effect of the recess cavity with and without a porous material on the flow in an axial compressor.


2014 ◽  
Vol 30 (3) ◽  
pp. 307-313 ◽  
Author(s):  
R. Taghavi-Zenou ◽  
S. Abbasi ◽  
S. Eslami

ABSTRACTThis paper deals with tip leakage flow structure in subsonic axial compressor rotor blades row under different operating conditions. Analyses are based on flow simulation utilizing computational fluid dynamic technique. Three different circumstances at near stall condition are considered in this respect. Tip leakage flow frequency spectrum was studied through surveying instantaneous static pressure signals imposed on blades surfaces. Results at the highest flow rate, close to the stall condition, showed that the tip vortex flow fluctuates with a frequency close to the blade passing frequency. In addition, pressure signals remained unchanged with time. Moreover, equal pressure fluctuations at different passages guaranteed no peripheral disturbances. Tip leakage flow frequency decreased with reduction of the mass flow rate and its structure was changing with time. Spillage of the tip leakage flow from the blade leading edge occurred without any backflow in the trailing edge region. Consequently, various flow structures were observed within every passage between two adjacent blades. Further decrease in the mass flow rate provided conditions where the spilled flow ahead of the blade leading edge together with trailing edge backflow caused spike stall to occur. This latter phenomenon was accompanied by lower frequencies and higher amplitudes of the pressure signals. Further revolution of the rotor blade row caused the spike stall to eventuate to larger stall cells, which may be led to fully developed rotating stall.


2008 ◽  
Author(s):  
Md Hamidur Rahman ◽  
Sung In Kim ◽  
Ibrahim Hassan

Steady simulations have been performed to investigate tip leakage flow and heat transfer characteristics on the casing and rotor blade tip in a single stage turbine engine. A turbine stage of stator and rotor was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data. The effects of tip clearance height and rotor rotational speed on the blade tip and casing heat transfer characteristics are mainly considered. It is observed that the tip leakage flow structure is highly dependent on the height of the tip gap as well as speeds of the rotor blade. In all cases, flow separates just around the corner of the pressure side of the blade tip. The region of recirculating flow increases with the increase of the clearance height. Then the flow reattaches on the tip surface near the suction side beyond the flow separation. This flow reattachment enhances surface heat transfer. The leakage flow interaction with the reverse cross flow, induced by relative casing motion, is found to have significant effect on the blade tip and casing heat transfer distribution. Critical region of high heat transfer on the casing exists near the blade tip leading edge and along the pressure side edge at all clearance height. Whereas, at high speed rotation, it tends to move towards the trailing edge due to the change of inflow angle.


Author(s):  
Yanhui Wu ◽  
Wuli Chu ◽  
Xingen Lu ◽  
Junqiang Zhu

The current paper reports on investigations with an aim to advance the understanding of the flow field near the casing of a small-scale high-speed axial flow compressor rotor. Steady three dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. To demonstrate the validity of the computation, the numerical results are first compared with available measured data. Then, the numerically obtained flow fields are analyzed to identify the behavior of tip leakage flow, and the mechanism of blockage generation arising from flow interactions between the tip clearance flow, the blade/casing wall boundary layers, and non-uniform main flow. The current investigation indicates that the “breakdown” of the tip leakage vortex occurs inside the rotor passage at the near stall condition. The vortex “breakdown” results in the low-energy fluid accumulating on the casing wall spreads out remarkably, which causes a sudden growth of the casing wall boundary layer having a large blockage effect. A low-velocity region develops along the tip clearance vortex at the near stall condition due to the vortex “breakdown”. As the mass flow rate is further decreased, this area builds up rapidly and moves upstream. This area prevents incoming flow from passing through the pressure side of the passage and forces the tip leakage flow to spill into the adjacent blade passage from the pressure side at the leading edge. It is found that the tip leakage flow exerts little influence on the development of the blade suction surface boundary layer even at the near stall condition.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


Author(s):  
Behnam H. Beheshti ◽  
Bijan Farhanieh ◽  
Kaveh Ghorbanian ◽  
Joao A. Teixeira ◽  
Paul C. Ivey

Improvements in sealing mechanism between the rotating and the stationary parts of a turbomachine can extensively reduce the endwall leakage flow. In this regard, abradable seals are incorporated into compressor and turbine blade-tip region. In a gas turbine, equipped with abradable seals, tip of the rotor blade is designed to cut into the material coating of the casing and to form a close fitted circumferential groove for the movement of the blade tip. As a result, the resistance to the leakage flow in the tip gap region increases due to smaller tip clearances (available without any rub-induced damages). Minimizing the tip clearance size can lead to an increase in performance and stability. This paper presents a numerical investigation of abradable coating as a means to seal the tip leakage flow in NASA Rotor 37, a transonic axial compressor rotor. In order to validate the multi block model used in the tip gap region, various flow characteristics are verified with the experimental data for smooth casing at a design clearance of 0.5% span. To have a better understanding of how an abradable seal affects the passage flow field, smooth casing and abradable coating are studied and results are compared for various models including two different incursion depth and width. Results indicate that the application of abradable coating in transonic axial compressors can efficiently improve the performance and stability.


Sign in / Sign up

Export Citation Format

Share Document