yield strength variation
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3011
Author(s):  
Wei Wan ◽  
Changxin Tang ◽  
An Qiu ◽  
Yongkang Xiang

The molecular dynamics method was used to simulate the fracture process of monocrystalline silicon with different sizes of point defect under a constant strain rate. The mechanism of the defect size on the mechanical properties of monocrystalline silicon was also investigated. The results suggested that the point defect significantly reduces the yield strength of monocrystalline silicon. The relationships between the yield strength variation and the size of point defect fitted an exponential function. By statistically analyzing the internal stress in monocrystalline silicon, it was found that the stress concentration induced by the point defect led to the decrease in the yield strength. A comparison between the theoretical strength given by the four theories of strength and actual strength proved that the Mises theory was the best theory of strength to describe the yield strength of monocrystalline silicon. The dynamic evolution process of Mises stress and dislocation showed that the fracture was caused by the concentration effect of Mises stress and dislocation slip. Finally, the fractured microstructures were similar to a kind of two-dimensional grid which distributed along the cleavage planes while visualizing the specimens. The results of this article provide a reference for evaluating the size effects of point defects on the mechanical properties of monocrystalline silicon.


2006 ◽  
Vol 532-533 ◽  
pp. 881-884
Author(s):  
Qin Xie ◽  
Geng Liu ◽  
Tian Xiang Liu ◽  
Jane Q. Wang

Reported in the paper is an elastic-plastic contact model developed to analyze the contact performance characteristics of materials with gradient yield strength. Plastic yielding and the strain-hardening properties of the materials are taken into account. The finite element method, the initial stiffness method, and a mathematical programming technique are utilized to solve the contact model. The von Mises yield criterion is used to determine the inception of plastic deformation. Results indicate that nitrided material with appropriate gradient of yield strength may greatly alter the distributions of contact stress, contact pressure as compared with untreated material in contact. The effects of different yield strength variation path of material on von Mises stress distributions are numerically investigated and discussed.


1968 ◽  
Vol 10 (10) ◽  
pp. 749-756 ◽  
Author(s):  
R.M. Caddell ◽  
G. Needham ◽  
W. Johnson

Sign in / Sign up

Export Citation Format

Share Document