network adaptation
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Felix Kramer ◽  
Carl D Modes

A plethora of computational models have been developed in recent decades to account for the morphogenesis of complex biological fluid networks, such as capillary beds. Contemporary adaptation models are based on optimization schemes where networks react and adapt toward given flow patterns. Doing so, a system reduces dissipation and network volume, thereby altering its final form. Yet, recent numeric studies on network morphogenesis, incorporating uptake of metabolites by the embedding tissue, have indicated the conventional approach to be insufficient. Here, we systematically study a hybrid-model which combines the network adaptation schemes intended to generate space-filling perfusion as well as optimal filtration of metabolites. As a result, we find hydrodynamic stimuli (wall-shear stress) and filtration based stimuli (uptake of metabolites) to be antagonistic as hydrodynamically optimized systems have suboptimal uptake qualities and vice versa. We show that a switch between different optimization regimes is typically accompanied with a complex transition between topologically redundant meshes and spanning trees. Depending on the metabolite demand and uptake capabilities of the adaptating networks, we are further able to demonstrate the existence of nullity re-entrant behavior and the development of compromised phenotypes such as dangling non-perfused vessels and bottlenecks.


2021 ◽  
Vol 30 (5) ◽  
pp. 290-294
Author(s):  
Amrita Rana ◽  
Kyung Ki Kim
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255503
Author(s):  
Rajesh Bhalwankar ◽  
Jan Treur

Learning knowledge or skills usually is considered to be based on the formation of an adequate internal mental model as a specific type of mental network. The learning process for such a mental model conceptualised as a mental network, is a form of (first-order) mental network adaptation. Such learning often integrates learning by observation and learning by instruction. For an effective learning process, an appropriate timing of these different elements is crucial. By controlling the timing of them, the mental network adaptation process becomes adaptive itself, which is called second-order mental network adaptation. In this paper, a second-order adaptive mental network model is proposed addressing this. The first-order adaptation process models the learning process of mental models and the second-order adaptation process controls the timing of the elements of this learning process. It is illustrated by a case study for the learner-controlled mental model learning in the context of driving a car. Here the learner is in control of the integration of learning by observation and learning by instruction.


Sign in / Sign up

Export Citation Format

Share Document