Transition control of the Blasius boundary layer using passivity

2018 ◽  
Vol 2 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Christopher J. Damaren
2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


1970 ◽  
Vol 92 (3) ◽  
pp. 503-508 ◽  
Author(s):  
T. Y. Na

An initial value method is introduced in this paper for the solution of a class of nonlinear two-point boundary value problems. The method can be applied to the class of equations where certain physical parameters appear either in the differential equation or in the boundary conditions or both. Application of this method to two problems in Fluid Mechanics, namely, Blasius’ boundary layer equation with suction (or blowing) and/or slip and the unsteady flow of a gas through a porous medium, are presented as illustrations of this method. The trial-and-error process usually required for the solution of such equations is eliminated.


2011 ◽  
Vol 6 (4) ◽  
pp. 25-41
Author(s):  
Andrey Boiko ◽  
Viktor Kulik ◽  
V. Filimonov

In the paper the results of hydrodynamic stability computations for Blasius boundary layer over single-layer compliant coatings in the framework of complete (in respect to interface conditions) linear quasi-parallel approach are presented. Data on viscoelastic properties (elastic modulus and loss factor) of the coatings as functions of frequency obtained in a series of special experiments were used. A range of the coating parameters, which provide a compromise between their rigidity and intensity of interaction with the flow, was determined. Based on en -method, estimations of the transition Reynolds number were done


1982 ◽  
Vol 49 (1) ◽  
pp. 13-18
Author(s):  
M. Toren ◽  
A. Solan ◽  
M. Ungarish

The rotating boundary layer flow over a plane sector of angle θs and infinite radius is solved. For sufficiently large radius the radial coordinate is eliminated by a Von Karman transformation, leaving a nonaxisymmetric flow in (θ,z), which cyclically changes over the full circle, from a Blasius boundary layer, to a Bodewadt flow, and to a rotating wake. Leading terms of the three-dimensional perturbation of the Blasius flow, and of the rotating wake are given, and the matching over the full circle is outlined for limiting values of θs.


2021 ◽  
Vol 9 (2) ◽  
pp. 35-41
Author(s):  
Manisha Patel ◽  
Hema Surati ◽  
M G Timol

Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99


2009 ◽  
Vol 6 (4) ◽  
pp. 211-218 ◽  
Author(s):  
C. Bolzmacher ◽  
X. Riedl ◽  
J. Leuckert ◽  
M. Engert ◽  
K. Bauer ◽  
...  

Drag reduction on airfoils using arrays of micro-actuators is one application of so-called Aero-MEMS. These microactuators interact with TS instabilities (Tollmien-Schlichting waves) inside a transitional boundary layer by superimposing artificially generated counterwaves in order to delay the transition process. These actuators need to exhibit a relatively large stroke at relatively high operational frequencies when operated at high Mach numbers. For this purpose, a novel micromachined mechanical amplification unit for increasing the stroke of piezoelectric microactuators up to high frequencies is proposed. The mechanical lever is provided by a sliced nickel titanium membrane. In this work, the actuator is explained in detail and wind tunnel experiments are carried out to investigate the effect of this mechanically amplified piezoelectric microactuator on thin transitional boundary layers. The experiments have been carried out in the transonic wind tunnel facility of the Berlin University of Technology on an unswept test wing with an NACA 0004 leading edge. The effectiveness of the actuator for flow control applications is determined in an open-loop setup consisting of one actuator having a relevant spanwise extension and a microstructured hot film sensor array located downstream. The aerodynamic results at Mach 0.33 are presented and discussed. It is shown that the actuator influences TS wave specific frequencies between 2.5 kHz and 7.4 kHz. The actuator amplitude is large enough to influence a transitional boundary layer significantly without bypassing the natural transition process which makes this type of micromachined actuator a candidate for high speed TS-control.


Sign in / Sign up

Export Citation Format

Share Document