mirror zone
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 280 ◽  
Author(s):  
Borut Zorc ◽  
Matija Zorc ◽  
Borut Kosec ◽  
Aleš Nagode

A destructive pressure test of styrene–acrylonitrile (SAN) water-filter housings showed the influence of the shape and specific details of the housings on their critical areas and their destructive pressure. The destructive pressure varies by as much as 37 bar due to different dominant stresses in the individual types of housings. In critical areas of the housings, geometrical stress concentrators generally exist. For this reason, the stress caused by the internal pressure is locally 2.75–3.4 times greater than that expected based on the water pressure, which means that cracks are initiated in these places. However, the bottom of the housings can be in a form such that the maximum stress and the crack originates in its central part without the influence of local stress concentrators. The tensile strength of the SAN is theoretically estimated at 73 N/mm2, which is comparable with the literature data. The fracture toughness of the SAN is typically low, theoretically estimated in the range 1.45–3.55 MPa·m1/2, and strongly depends on the degree of the wall’s stress-increasing rate or the crack-propagation rate. Therefore, at various crack-propagation rates, the critical crack depths are also different, in the range 100–600 μm. Due to this, the critical thickness for brittle fracture in the SAN is also different; it is ten times greater than the critical crack length. The characteristic of a sub-critical crack, i.e., the mirror zone, is its macroscopically smooth surface, which is microscopically very finely roughened. In the case of a sufficiently slowly growing sub-critical crack, the surface of the mirror zone contains characteristic parabolic markings. The over-critical, sufficiently rapidly growing cracks generally grow mainly in the plane-strain state and only the final thin layer of the remaining wall thickness breaks in the plane-stress state. The over-critical, sufficiently slowly growing cracks grow in the plane-stress state with a strong shear plastic tearing.



Author(s):  
Marc Vandebroek ◽  
Christian Louter ◽  
Robby Caspeele ◽  
Frank Ensslen ◽  
Jan Belis


Author(s):  
M Vandebroek ◽  
J Belis ◽  
C Louter ◽  
G Molnár
Keyword(s):  


1995 ◽  
Vol 409 ◽  
Author(s):  
E. Guilloteau ◽  
H. Arribart ◽  
F. Creuzet

AbstractWe present a nanometer scale description of the fracture surface of soda-lime glass. This is achieved by the use of Atomic Force Microscopy. The mirror zone is shown to be built with elementary entities, the density of which increases continuously while the mist and hackle zones are approached. Moreover, the overall picture leads to some kind of self-similarity, in the sense that small regions of the hackle zone exhibit the full set of mirror, mist and hackle areas.



Author(s):  
C. Khan Malek ◽  
T. Moreno ◽  
H. Berrouane ◽  
J. M. Andre ◽  
Ph. Guérin ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document