Friedberg splittings in Σ30 quotient lattices of

1999 ◽  
Vol 64 (4) ◽  
pp. 1403-1406 ◽  
Author(s):  
Todd Hammond

Let {We}e∈ω be a standard enumeration of the recursively enumerable (r.e.) subsets of ω = {0,1,2,…}. The lattice of recursively enumerable sets, , is the structure ({We}e∈ω,∪,∩). ≡ is a congruence relation on if ≡ is an equivalence relation on and if for all U, U′ ∈ and V, V′ ∈ , if U ≡ U′ and V ≡ V′, then U ∪ V ≡ U′ ∪ V′ and U ∩ V ≡ U′ ∩ V′. [U] = {V ∈ | V ≡ U} is the equivalence class of U. If ≡ is a congruence relation on , the elements of the quotient lattice / ≡ are the equivalence classes of ≡. [U] ∪ [V] is defined as [U ∪ V], and [U] ∩ [V] is defined as [U ∩ V]. We say that a congruence relation ≡ on is if {(i, j)| Wi ≡ Wj} is . Define =* by putting Wi, =* Wj if and only if (Wi − Wj)∪ (Wj − Wi) is finite. Then =* is a congruence relation. If D is any set, then we can define a congruence relation by putting Wi Wj if and only if Wi ∩ D =* Wj ∩D. By Hammond [2], a congruence relation ≡ ⊇ =* is if and only if ≡ is equal to for some set D.The Friedberg splitting theorem [1] asserts that if A is any recursively enumerable set, then there exist disjoint recursively enumerable sets A0 and A1 such that A = A0∪ A1 and such that for any recursively enumerable set B


2002 ◽  
Vol 67 (2) ◽  
pp. 497-504
Author(s):  
Todd Hammond

Let {We}e∈ω be a standard enumeration of the recursively enumerable (r. e.) subsets of ω = {0, 1, 2, …}. The lattice of recursively enumerable sets, is the structure ({We}e∈ω, ∪, ∩). is the sublattice of consisting of the recursive sets.Suppose is a lattice of subsets of ω. ≡ is said to be a congruence relation on if ≡ is an equivalence relation on and if for all U, U′ ∈ and V, V ∈ , if U ≡ U′ and V ≡ V′ then U ∪ U′ ≡ V ∪ V′ and U ∩ U′ ≡ V ∩ V′. [U] = {V ∈ | V ≡ U} is the equivalence class of U. If ≡ is a congruence relation on , the elements of the quotient lattice / ≡ are the equivalence classes of ≡. [U] ∪ [V] is defined as [U ∪ V], and [U] ∩ [V] is defined as [U ∩ V].The quotient lattices of (or of some sublattice ) correspond naturally with the congruence relations which give rise to them, and in turn the congruence relations of sublattices of can be characterized in part by their computational complexity. The aim of the present paper is to characterize congruence relations in some of the most important complexity classes.



Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1044 ◽  
Author(s):  
Jeong-Gon Lee ◽  
Kul Hur

We introduce the concepts of a bipolar fuzzy reflexive, symmetric, and transitive relation. We study bipolar fuzzy analogues of many results concerning relationships between ordinary reflexive, symmetric, and transitive relations. Next, we define the concepts of a bipolar fuzzy equivalence class and a bipolar fuzzy partition, and we prove that the set of all bipolar fuzzy equivalence classes is a bipolar fuzzy partition and that the bipolar fuzzy equivalence relation is induced by a bipolar fuzzy partition. Finally, we define an ( a , b ) -level set of a bipolar fuzzy relation and investigate some relationships between bipolar fuzzy relations and their ( a , b ) -level sets.



1958 ◽  
Vol 23 (4) ◽  
pp. 389-392 ◽  
Author(s):  
J. R. Shoenfield

In this paper we answer some of the questions left open in [2]. We use the terminology of [2]. In particular, a theory will be a formal system formulated within the first-order calculus with identity. A theory is identified with the set of Gödel numbers of the theorems of the theory. Thus Craig's theorem [1] asserts that a theory is axiomatizable if and only if it is recursively enumerable.In [2], Feferman showed that if A is any recursively enumerable set, then there is an axiomatizable theory T having the same degree of unsolvability as A. (This result was proved independently by D. B. Mumford.) We show in Theorem 2 that if A is not recursive, then T may be chosen essentially undecidable. This depends on Theorem 1, which is a result on recursively enumerable sets of some independent interest.Our second result, given in Theorem 3, gives sufficient conditions for a theory to be creative. These conditions are more general than those given by Feferman. In particular, they show that the system of Kreisel described in [2] is creative.



2019 ◽  
Vol 27 (2) ◽  
pp. 209-221
Author(s):  
Karol Pąk

Summary This article is the final step of our attempts to formalize the negative solution of Hilbert’s tenth problem. In our approach, we work with the Pell’s Equation defined in [2]. We analyzed this equation in the general case to show its solvability as well as the cardinality and shape of all possible solutions. Then we focus on a special case of the equation, which has the form x2 − (a2 − 1)y2 = 1 [8] and its solutions considered as two sequences $\left\{ {{x_i}(a)} \right\}_{i = 0}^\infty ,\left\{ {{y_i}(a)} \right\}_{i = 0}^\infty$ . We showed in [1] that the n-th element of these sequences can be obtained from lists of several basic Diophantine relations as linear equations, finite products, congruences and inequalities, or more precisely that the equation x = yi(a) is Diophantine. Following the post-Matiyasevich results we show that the equality determined by the value of the power function y = xz is Diophantine, and analogously property in cases of the binomial coe cient, factorial and several product [9]. In this article, we combine analyzed so far Diophantine relation using conjunctions, alternatives as well as substitution to prove the bounded quantifier theorem. Based on this theorem we prove MDPR-theorem that every recursively enumerable set is Diophantine, where recursively enumerable sets have been defined by the Martin Davis normal form. The formalization by means of Mizar system [5], [7], [4] follows [10], Z. Adamowicz, P. Zbierski [3] as well as M. Davis [6].



2019 ◽  
Vol 4 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Berhanu Assaye ◽  
Mihret Alamneh ◽  
Lakshmi Narayan Mishra ◽  
Yeshiwas Mebrat

AbstractIn this paper, we introduce the concept of dual skew Heyting almost distributive lattices (dual skew HADLs) and characterise it in terms of dual HADL. We define an equivalence relation θ on a dual skew HADL L and prove that θ is a congruence relation on the equivalence class [x]θ so that each congruence class is a maximal rectangular subalgebra and the quotient [y]θ/θ is a maximal lattice image of [x]θ for any y ∈ [x]θ. Moreover, we show that if the set PI (L) of all the principal ideals of an ADL L with 0 is a dual skew Heyting algebra then L becomes a dual skew HADL. Further we present different conditions on which an ADL with 0 becomes a dual skew HADL.



2003 ◽  
Vol 13 (07) ◽  
pp. 1911-1915 ◽  
Author(s):  
Z. Leśniak

We consider an equivalence relation for a given free mapping f of the plane. Under the assumption that f is embeddable in a flow {ft : t ∈ R} we describe the structure of equivalence classes of the relation. Finally, we prove that f restricted to each equivalence class is a Sperner homeomorphism.



1969 ◽  
Vol 34 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Louise Hay

Let q0, q1,… be a standard enumeration of all partial recursive functions of one variable. For each i, let wi = range qi and for any recursively enumerable (r.e.) set α, let θα = {n | wn = α}. If A is a class of r.e. sets, let θA = the index set of A = {n | wn ∈ A}. It is the purpose of this paper to classify the possible recursive isomorphism types of index sets of finite classes of r.e. sets. The main theorem will also provide an answer to the question left open in [2] concerning the possible double isomorphism types of pairs (θα, θβ) where α ⊂ β.



1976 ◽  
Vol 41 (2) ◽  
pp. 405-418
Author(s):  
Manuel Lerman

Throughout this paper, α will denote an admissible ordinal. Let (α) denote the lattice of α-r.e. sets, i.e., the lattice whose elements are the α-r.e. sets, and whose ordering is given by set inclusion. Call a set A ∈ (α)α*-finite if it is α-finite and has ordertype < α* (the Σ1-projectum of α). The α*-finite sets form an ideal of (α), and factoring (α) by this ideal, we obtain the quotient lattice *(α).We will fix a language ℒ suitable for lattice theory, and discuss decidability in terms of this language. Two approaches have succeeded in making some progress towards determining the decidability of the elementary theory of (α). Each approach was first used by Lachlan for α = ω. The first approach is to relate the decidability of the elementary theory of (α) to that of a suitable quotient lattice of (α) by a congruence relation definable in ℒ. This technique was used by Lachlan [4, §1] to obtain the equidecidability of the elementary theories of (ω) and *(ω), and was generalized by us [6, Corollary 1.2] to yield the equidecidability of the elementary theories of (α) and *(α) for all α. Lachlan [3] then adopted a different approach.



1957 ◽  
Vol 22 (2) ◽  
pp. 161-175 ◽  
Author(s):  
Solomon Feferman

In his well-known paper [11], Post founded a general theory of recursively enumerable sets, which had its metamathematical source in questions about the decision problem for deducibility in formal systems. However, in centering attention on the notion of degree of unsolvability, Post set a course for his theory which has rarely returned to this source. Among exceptions to this tendency we may mention, as being closest to the problems considered here, the work of Kleene in [8] pp. 298–316, of Myhill in [10], and of Uspenskij in [15]. It is the purpose of this paper to make some further contributions towards bridging this gap.From a certain point of view, it may be argued that there is no real separation between metamathematics and the theory of recursively enumerable sets. For, if the notion of formal system is construed in a sufficiently wide sense, by taking as ‘axioms’ certain effectively found members of a set of ‘formal objects’ and as ‘proofs’ certain effectively found sequences of these objects, then the set of ‘provable statements’ of such a system may be identified, via Gödel's numbering technique, with a recursively enumerable set; and conversely, each recursively enumerable set is identified in this manner with some formal system (cf. [8] pp. 299–300 and 306). However, the pertinence of Post's theory is no longer clear when we turn to systems formalized within the more conventional framework of the first-order predicate calculus. It is just this restriction which serves to clarify the difference in spirit of the two disciplines.



1983 ◽  
Vol 48 (3) ◽  
pp. 542-557 ◽  
Author(s):  
Matatyahu Rubin ◽  
Saharon Shelah

AbstractWe prove that the logics of Magidor-Malitz and their generalization by Rubin are distinct even for PC classes.Let M ⊨ Qnx1 … xnφ(x1 … xn) mean that there is an uncountable subset A of ∣M∣ such that for every a1 …, an ∈ A, M ⊨ φ[a1, …, an].Theorem 1.1 (Shelah) (♢ℵ1). For every n ∈ ωthe classKn+1 = {‹A, R› ∣ ‹A, R› ⊨ ¬ Qn+1x1 … xn+1R(x1, …, xn+1)} is not an ℵ0-PC-class in the logic ℒn, obtained by closing first order logic underQ1, …, Qn. I.e. for no countable ℒn-theory T, isKn+1the class of reducts of the models of T.Theorem 1.2 (Rubin) (♢ℵ1). Let M ⊨ QE x yφ(x, y) mean that there is A ⊆ ∣M∣ such thatEA, φ = {‹a, b› ∣ a, b ∈ A and M ⊨ φ[a, b]) is an equivalence relation on A with uncountably many equivalence classes, and such that each equivalence class is uncountable. Let KE = {‹A, R› ∣ ‹A, R› ⊨ ¬ QExyR(x, y)}. Then KE is not an ℵ0-PC-class in the logic gotten by closing first order logic under the set of quantifiers {Qn ∣ n ∈ ω) which were defined in Theorem 1.1.



Sign in / Sign up

Export Citation Format

Share Document