prolamellar body
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 118 (42) ◽  
pp. e2113934118
Author(s):  
Omar Sandoval-Ibáñez ◽  
Anurag Sharma ◽  
Michał Bykowski ◽  
Guillem Borràs-Gas ◽  
James B. Y. H. Behrendorff ◽  
...  

The term “de-etiolation” refers to the light-dependent differentiation of etioplasts to chloroplasts in angiosperms. The underlying process involves reorganization of prolamellar bodies (PLBs) and prothylakoids into thylakoids, with concurrent changes in protein, lipid, and pigment composition, which together lead to the assembly of active photosynthetic complexes. Despite the highly conserved structure of PLBs among land plants, the processes that mediate PLB maintenance and their disassembly during de-etiolation are poorly understood. Among chloroplast thylakoid membrane–localized proteins, to date, only Curvature thylakoid 1 (CURT1) proteins were shown to exhibit intrinsic membrane-bending capacity. Here, we show that CURT1 proteins, which play a critical role in grana margin architecture and thylakoid plasticity, also participate in de-etiolation and modulate PLB geometry and density. Lack of CURT1 proteins severely perturbs PLB organization and vesicle fusion, leading to reduced accumulation of the light-dependent enzyme protochlorophyllide oxidoreductase (LPOR) and a delay in the onset of photosynthesis. In contrast, overexpression of CURT1A induces excessive bending of PLB membranes, which upon illumination show retarded disassembly and concomitant overaccumulation of LPOR, though without affecting greening or the establishment of photosynthesis. We conclude that CURT1 proteins contribute to the maintenance of the paracrystalline PLB morphology and are necessary for efficient and organized thylakoid membrane maturation during de-etiolation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katalin Solymosi ◽  
Beata Mysliwa-Kurdziel

Chlorophyll (Chl) is essential for photosynthesis and needs to be produced throughout the whole plant life, especially under changing light intensity and stress conditions which may result in the destruction and elimination of these pigments. All steps of the Mg-branch of tetrapyrrole biosynthesis leading to Chl formation are carried out by enzymes associated with plastid membranes. Still the significance of these protein-membrane and protein-lipid interactions in Chl synthesis and chloroplast differentiation are not very well-understood. In this review, we provide an overview on Chl biosynthesis in angiosperms with emphasis on its association with membranes and lipids. Moreover, the last steps of the pathway including the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), the biosynthesis of the isoprenoid phytyl moiety and the esterification of Chlide are also summarized. The unique biochemical and photophysical properties of the light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) enzyme catalyzing Pchlide photoreduction and located to peculiar tubuloreticular prolamellar body (PLB) membranes of light-deprived tissues of angiosperms and to envelope membranes, as well as to thylakoids (especially grana margins) are also reviewed. Data about the factors influencing tubuloreticular membrane formation within cells, the spectroscopic properties and the in vitro reconstitution of the native LPOR enzyme complexes are also critically discussed.


Nature Plants ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 514-523 ◽  
Author(s):  
Davide Floris ◽  
Werner Kühlbrandt

AbstractEtioplasts are photosynthetically inactive plastids that accumulate when light levels are too low for chloroplast maturation. The etioplast inner membrane consists of a paracrystalline tubular lattice and peripheral, disk-shaped membranes, respectively known as the prolamellar body and prothylakoids. These distinct membrane regions are connected into one continuous compartment. To date, no structures of protein complexes in or at etioplast membranes have been reported. Here, we used electron cryo-tomography to explore the molecular membrane landscape of pea and maize etioplasts. Our tomographic reconstructions show that ATP synthase monomers are enriched in the prothylakoids, and plastid ribosomes in the tubular lattice. The entire tubular lattice is covered by regular helical arrays of a membrane-associated protein, which we identified as the 37-kDa enzyme, light-dependent protochlorophyllide oxidoreductase (LPOR). LPOR is the most abundant protein in the etioplast, where it is responsible for chlorophyll biosynthesis, photoprotection and defining the membrane geometry of the prolamellar body. Based on the 9-Å-resolution volume of the subtomogram average, we propose a structural model of membrane-associated LPOR.


Author(s):  
Michał Bykowski ◽  
Radosław Mazur ◽  
Daniel Buszewicz ◽  
Joanna Szach ◽  
Agnieszka Mostowska ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher I Cazzonelli ◽  
Xin Hou ◽  
Yagiz Alagoz ◽  
John Rivers ◽  
Namraj Dhami ◽  
...  

Carotenoids are a core plastid component and yet their regulatory function during plastid biogenesis remains enigmatic. A unique carotenoid biosynthesis mutant, carotenoid chloroplast regulation 2 (ccr2), that has no prolamellar body (PLB) and normal PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) levels, was used to demonstrate a regulatory function for carotenoids and their derivatives under varied dark-light regimes. A forward genetics approach revealed how an epistatic interaction between a ζ-carotene isomerase mutant (ziso-155) and ccr2 blocked the biosynthesis of specific cis-carotenes and restored PLB formation in etioplasts. We attributed this to a novel apocarotenoid retrograde signal, as chemical inhibition of carotenoid cleavage dioxygenase activity restored PLB formation in ccr2 etioplasts during skotomorphogenesis. The apocarotenoid acted in parallel to the repressor of photomorphogenesis, DEETIOLATED1 (DET1), to transcriptionally regulate PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR), PHYTOCHROME INTERACTING FACTOR3 (PIF3) and ELONGATED HYPOCOTYL5 (HY5). The unknown apocarotenoid signal restored POR protein levels and PLB formation in det1, thereby controlling plastid development.


2019 ◽  
Author(s):  
Christopher I Cazzonelli ◽  
Xin Hou ◽  
Yagiz Alagoz ◽  
John Rivers ◽  
Namraj Dhami ◽  
...  

ABSTRACTCarotenoids are core plastid components, yet a regulatory function during plastid biogenesis remains enigmatic. A unique carotenoid biosynthesis mutant, carotenoid chloroplast regulation 2 (ccr2), that has no prolamellar body (PLB) and normal PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) levels, was used to demonstrate a regulatory function for carotenoids under varied dark-light regimes. A forward genetics approach revealed how an epistatic interaction between a (-carotene isomerase mutant (ziso-155) and ccr2 blocked the biosynthesis of specific cis-carotenes and restored PLB formation in etioplasts. We attributed this to a novel apocarotenoid signal, as chemical inhibition of carotenoid cleavage dioxygenase activity restored PLB formation in ccr2 etioplasts during skotomorphogenesis. The apocarotenoid acted in parallel to the transcriptional repressor of photomorphogenesis, DEETIOLATED1 (DET1), to post-transcriptionally regulate PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR), PHYTOCHROME INTERACTING FACTOR3 (PIF3) and ELONGATED HYPOCOTYL5 (HY5) protein levels. The apocarotenoid signal and det1 complemented each other to restore POR levels and PLB formation, thereby controlling plastid development.One-sentence summaryCarotenoids are not just required as core components for plastid biogenesis, they can be cleaved into an apocarotenoid signal that regulates etioplast and chloroplast development during extended periods of darkness.


2014 ◽  
Vol 54 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Agnieszka Mostowska

The plastid prolamelar bodies in dark-grown pea seedlings undergo gradual transformation and decay after illumination with low intensity light. Random micrographs do not give direct information concerning the sizes and average numbers of prolamellar bodies in a plastid. These values were obtained after evaluation by a stereometrical method from the ratio of polamellar bodies sizes to the plastid size and from the frequency of prolamellar body sections of a given diameter. Plastids of dark-grown seedlings contained on the average at least one prolamellar body. After illumination the size of the bodies decreased rapidly owing to dispersion into primary thylakoids and split into much smaller numerous prolamellar bodies.


2008 ◽  
Vol 148 (1) ◽  
pp. 580-592 ◽  
Author(s):  
Henrik Aronsson ◽  
Mark A. Schöttler ◽  
Amélie A. Kelly ◽  
Christer Sundqvist ◽  
Peter Dörmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document