source directivity
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 21)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 263 (1) ◽  
pp. 5147-5153
Author(s):  
Takuya Oshima ◽  
Fumiya Takeda ◽  
Yumi Kurosaka

The Japanese ASJ RTN-Model 2018, European Harmonoise and CNOSSOS-EU outdoor sound prediction models are respectively known to have symmetric, asymmetric and omnidirectional sound emission directivities along front-back direction of the source vehicle. However, the influence of such difference in directivities to final predicted sound levels has not been investigated much. In this study, the influence is investigated using the ASJ Model and the Harmonoise under a configuration of semi-finite thick barrier along a source road. The configuration is an idealization of Japanese roadside buildings that have gaps in between, unlike European buildings that continuously extend over a whole urban block. Under the configuration, distribution of A-weighted sound levels around the end face of the barrier are computed with and without source directivity taken into account by each model. It is found from the results that the source directivity of the ASJ model makes little difference in the noise level distribution. In contrast, the source directivity of Harmonoise is found to make differences of 0.5-0.8 dB at right behind the barrier depending on vehicle running direction. However, a combined effect of source directivity and reflection at the end face is found to be negligible.


Acoustics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 462-472
Author(s):  
Simon Jekosch ◽  
Ennes Sarradj

Microphone arrays methods are useful for determining the location and magnitude of rotating acoustic sources. This work presents an approach to calculating a discrete directivity pattern of a rotating sound source using inverse microphone array methods. The proposed method is divided into three consecutive steps. Firstly, a virtual rotating array method that compensates for motion of the source is employed in order to calculate the cross-spectral matrix. Secondly, the source locations are determined by a covariance matrix fitting approach. Finally, the sound source directivity is calculated using the inverse method SODIX on a reduced focus grid. Experimental validation and synthetic data from a simulation are used for the verification of the method. For this purpose, a rotating parametric loudspeaker array with a controllable steering pattern is designed. Five different directivity patterns of the rotating source are compared. The proposed method compensates for source motion and is able to reconstruct the location as well the directivity pattern of the rotating beam source.


2021 ◽  
Vol 149 (4) ◽  
pp. 2743-2751
Author(s):  
Haoyu Bian ◽  
Ryu Fattah ◽  
Siyang Zhong ◽  
Xin Zhang

Author(s):  
Giovanna Calderoni ◽  
Anna Gervasi ◽  
Mario La Rocca ◽  
Guido Ventura

Abstract We analyzed earthquakes of a swarm started in October 2019 in the Tyrrhenian Sea, at the northern border of the Calabrian arc subduction zone. The swarm is located in the same area where a subduction-transform edge propagator (STEP) shear- zone -oriented east–west is recognized from ocean floor morphology and submarine volcanoes. We computed focal mechanism, relative location, stress drop, corner frequency, and source directivity of the mainshock Mw 4.4 and of some aftershocks in the local magnitude range 2.3–3.7. Results indicate clearly that the mainshock occurred on a northwest–southeast-oriented fault, with right-lateral strike-slip motion, and it was characterized by a strong directivity of the rupture propagation from northwest to southeast. On the contrary, most of aftershocks were located on another strike-slip fault oriented northeast–southwest and had left-lateral kinematics. The kinematic features of these earthquakes indicate a strain field with the P-axis oriented north–south and the T-axis oriented east–west. Fault directions and stress field are in good agreement with the theoretical fracture model of shear zones associated with a STEP.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Vincenzo De Novellis ◽  
Vincenzo Convertito ◽  
Sotiris Valkaniotis ◽  
Francesco Casu ◽  
Riccardo Lanari ◽  
...  

Abstract Earthquake occurrence is ultimately controlled by tectonic stress load. Nevertheless, the 2019, Mw = 4.9, Le Teil earthquake in southern France occurred in an area where strain rates are relatively low. Human operations can produce increases in stress load and degradation of strength on nearby active faults, which raises the potential for failure. Here we present estimates of the rupture geometry and source directivity of the Le Teil earthquake based on differential synthetic aperture radar interferometry and seismic data. We find that almost two centuries of mass removal at a nearby cement quarry likely provided the required stress change to either induce the Le Teil earthquake, or hasten its occurrence by more than 100,000 years. We suggest that further mass removal in the area might lead to even stronger earthquakes, by activating deeper sectors of the same fault plane.


Sign in / Sign up

Export Citation Format

Share Document