symbiotic microalgae
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)



2021 ◽  
Author(s):  
Johan Decelle ◽  
Giulia Veronesi ◽  
Charlotte LeKieffre ◽  
Benoit Gallet ◽  
Fabien Chevalier ◽  
...  

Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium) collected in surface seawaters. We showed that this symbiosis is a very dynamic system whereby symbionts interact with different host cells via extracellular vesicles within the greenhouse-like colony. 3D electron microscopy revealed that the volume of the photosynthetic apparatus (plastid and pyrenoid) of the microalgae increased in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were assimilated and stored in the symbiotic microalga in starch granules and purine crystals, respectively. Nitrogen was also allocated to the algal nucleus (nucleolus). After 3 hours, low 13C and 15N transfer was detected in the host Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (ca 40 ppm) and two-fold higher in the host, whereas copper concentration increased in symbiotic microalgae (up to 6900 ppm) and was detected in the host cell and extracellular vesicles. Sulfur mapping also pinpointed the importance of this nutrient for the algal metabolism. This study, which revealed subcellular changes of the morphology and nutrient homeostasis in symbiotic microalgae, improves our understanding on the metabolism of this widespread and abundant oceanic symbiosis and paves the way for more studies to investigate the metabolites exchanged.



2021 ◽  
Vol 27 (9) ◽  
pp. 1737-1754
Author(s):  
Wing Yan Chan ◽  
John G. Oakeshott ◽  
Patrick Buerger ◽  
Owain R. Edwards ◽  
Madeleine J. H. Oppen


2019 ◽  
Author(s):  
Marie R. Jacobovitz ◽  
Sebastian Rupp ◽  
Philipp A. Voss ◽  
Sebastian G. Gornik ◽  
Annika Guse

AbstractEmergence of the symbiotic lifestyle fostered the immense diversity of all ecosystems on Earth, but symbiosis plays a particularly remarkable role in marine ecosystems. Photosynthetic dinoflagellate endosymbionts power reef ecosystems by transferring vital nutrients to their coral hosts. The mechanisms driving this symbiosis, specifically those which allow hosts to discriminate between beneficial symbionts and pathogens, are not well understood. Here, we uncover that host immune suppression is key for dinoflagellate endosymbionts to avoid elimination by the host using a comparative, model systems approach. Unexpectedly, we find that the clearance of non-symbiotic microalgae occurs by non-lytic expulsion (vomocytosis) and not intracellular digestion, the canonical mechanism used by professional immune cells to destroy foreign invaders. We provide evidence that suppression of TLR signalling by targeting the conserved MyD88 adapter protein has been co-opted for this endosymbiotic lifestyle, suggesting that this is an evolutionarily ancient mechanism exploited to facilitate symbiotic associations ranging from coral endosymbiosis to the microbiome of vertebrate guts.



2018 ◽  
Author(s):  
Emilie Villar ◽  
Vincent Dani ◽  
Estelle Bigeard ◽  
Tatiana Linhart ◽  
Miguel Mendez Sandin ◽  
...  

AbstractCollodaria (Radiolaria) are important contributors to planktonic communities and biogeochemical processes (e.g. the biologic pump) in oligotrophic oceans. Similarly to corals, Collodaria live in symbiosis with dinoflagellate algae, a relationship that is thought to explain partly their ecological success. In the context of global change, the robustness of the symbiotic interaction and potential subsequent bleaching events are worth consideration. In the present study, we compared the ultrastructure morphology, symbiont density, photosynthetic capacities and respiration rates of colonial Collodaria exposed to a range of temperatures corresponding to natural conditions (21°C), moderate (25°C) and high (28°C) thermal stress. We showed that symbiont density immediately decreased when temperature rises to 25°C and the collodaria holobiont metabolic activity increased. When temperature reached 28°C, the collodarian host arrived at a tolerance threshold with a respiration nearly stopped and largely damaged morphological structures. Over the course of the experiment the photosynthetic capacities of remaining symbionts were stable, chloroplasts being the last degraded organelles from the microalgae. These results contribute to a better characterization and understanding of temperature-induced bleaching processes in planktonic photosymbiosis.



PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3472 ◽  
Author(s):  
Ross Cunning ◽  
Ruth D. Gates ◽  
Peter J. Edmunds

Symbiotic microalgae (Symbiodinium spp.) strongly influence the performance and stress-tolerance of their coral hosts, making the analysis of Symbiodinium communities in corals (and metacommunities on reefs) advantageous for many aspects of coral reef research. High-throughput sequencing of ITS2 nrDNA offers unprecedented scale in describing these communities, yet high intragenomic variability at this locus complicates the resolution of biologically meaningful diversity. Here, we demonstrate that generating operational taxonomic units by clustering ITS2 sequences at 97% similarity within, but not across, samples collapses sequence diversity that is more likely to be intragenomic, while preserving diversity that is more likely interspecific. We utilize this ‘within-sample clustering’ to analyze Symbiodinium from ten host taxa on shallow reefs on the north and south shores of St. John, US Virgin Islands. While Symbiodinium communities did not differ between shores, metacommunity network analysis of host-symbiont associations revealed Symbiodinium lineages occupying ‘dominant’ and ‘background’ niches, and coral hosts that are more ‘flexible’ or ‘specific’ in their associations with Symbiodinium. These methods shed new light on important questions in coral symbiosis ecology, and demonstrate how application-specific bioinformatic pipelines can improve the analysis of metabarcoding data in microbial metacommunity studies.



Author(s):  
Ross Cunning ◽  
Ruth D Gates ◽  
Peter J Edmunds

Symbiotic microalgae (Symbiodinium spp.) strongly influence the performance and stress-tolerance of their coral hosts, making the analysis of Symbiodinium communities in corals (and metacommunities on reefs) advantageous for many aspects of coral reef research. High-throughput sequencing of ITS2 nrDNA offers unprecedented scale in describing these communities, yet high intragenomic variability at this locus complicates the resolution of biologically meaningful diversity. Here, we demonstrate that generating operational taxonomic units by clustering ITS2 sequences at 97% similarity within, but not across, samples collapses sequence diversity that is more likely to be intragenomic, while preserving diversity that is more likely interspecific. We utilize this 'within-sample clustering' to analyze Symbiodinium from ten host taxa on shallow reefs on the north and south shores of St. John, US Virgin Islands. While Symbiodinium communities did not differ between shores, metacommunity network analysis of host-symbiont associations revealed Symbiodinium lineages occupying 'dominant' and 'background' niches, and coral hosts that are more 'flexible' or 'specific' in their associations with Symbiodinium. These methods shed new light on important questions in coral symbiosis ecology, and demonstrate how application-specific bioinformatic pipelines can improve the analysis of metabarcoding data in microbial metacommunity studies.



Author(s):  
Ross Cunning ◽  
Ruth D Gates ◽  
Peter J Edmunds

Symbiotic microalgae (Symbiodinium spp.) strongly influence the performance and stress-tolerance of their coral hosts, making the analysis of Symbiodinium communities in corals (and metacommunities on reefs) advantageous for many aspects of coral reef research. High-throughput sequencing of ITS2 nrDNA offers unprecedented scale in describing these communities, yet high intragenomic variability at this locus complicates the resolution of biologically meaningful diversity. Here, we demonstrate that generating operational taxonomic units by clustering ITS2 sequences at 97% similarity within, but not across, samples collapses sequence diversity that is more likely to be intragenomic, while preserving diversity that is more likely interspecific. We utilize this 'within-sample clustering' to analyze Symbiodinium from ten host taxa on shallow reefs on the north and south shores of St. John, US Virgin Islands. While Symbiodinium communities did not differ between shores, metacommunity network analysis of host-symbiont associations revealed Symbiodinium lineages occupying 'dominant' and 'background' niches, and coral hosts that are more 'flexible' or 'specific' in their associations with Symbiodinium. These methods shed new light on important questions in coral symbiosis ecology, and demonstrate how application-specific bioinformatic pipelines can improve the analysis of metabarcoding data in microbial metacommunity studies.



2016 ◽  
Vol 3 ◽  
Author(s):  
Shai Einbinder ◽  
David F. Gruber ◽  
Eitan Salomon ◽  
Oded Liran ◽  
Nir Keren ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document