cassiopea xamachana
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 66 (4) ◽  
Author(s):  
Valeriia Khabibulina ◽  
Viktor Starunov

Polyps of the Cassiopeidae family possess a unique type of asexual reproduction by producing free-swimming buds — planuloids. The process of planuloid development and transformation to polyp has been described earlier, however, the source of tissue formation is still poorly studied. Using the method of EdU incorporation we have analyzed DNA synthesis activity during planuloid formation and growth in Cassiopea xamachana. We revealed the active proliferation zone at the early stage of bud formation. This zone continued to function during planuloid growth, providing the formation of polyp structures, and preserved in polyp calyx after metamorphosis. Its proliferation activity varied at different growth stages, whereas the localization remained relatively the same.


Oceans ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 811-821
Author(s):  
William K. Fitt ◽  
Dietrich K. Hofmann ◽  
Dustin W. Kemp ◽  
Aki H. Ohdera

The jellyfish Cassiopea xamachana and C. frondosa co-occur within some habitats in the Florida Keys, but the frequency with which this occurs is low. It is hypothesized that the symbiosis with different dinoflagellates in the Symbiodiniaceae is the reason: the medusae of C. xamachana contain heat-resistant Symbiodinium microadriaticum (ITS-type A1), whereas C. frondosa has heat-sensitive Breviolum sp. (ITS-type B19). Cohabitation occurs at depths of about 3–4 m in Florida Bay, where the water is on average 0.36 °C cooler, or up to 1.1 °C cooler per day. C. frondosa tends not to be found in the warmer and shallower (<2 m) depths of Florida Bay. While the density of symbionts is about equal in the small jellyfish of the two species, large C. frondosa medusae have a greater density of symbionts and appear darker in color compared to large C. xamachana. However, the number of symbionts per amebocyte are about the same, which implies that the large C. frondosa has more amebocytes than the large C. xamachana. The photosynthetic rate is similar in small medusae, but a greater reduction in photosynthesis is observed in the larger medusae of C. xamachana compared to those of C. frondosa. Medusae of C. xamachana have greater pulse rates than medusae of C. frondosa, suggestive of a greater metabolic demand. The differences in life history traits of the two species were also investigated to understand the factors that contribute to observed differences in habitat selection. The larvae of C. xamachana require lower concentrations of inducer to settle/metamorphose, and they readily settle on mangrove leaves, submerged rock, and sand compared to the larvae of C. frondosa. The asexual buds of C. xamachana are of a uniform and similar shape as compared to the variably sized and shaped buds of C. frondosa. The larger polyps of C. frondosa can have more than one attachment site compared to the single holdfast of C. xamachana. This appears to be an example of niche diversification that is likely influenced by the symbiont, with the ecological generalist and heat-resistant S. microadriaticum thriving in C. xamachana in a wider range of habitats as compared to the heat-sensitive symbiont Breviolum sp., which is only found in C. frondosa in the cooler and deeper waters.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jonathan W. Lawley ◽  
Anthony R. Carroll ◽  
Carmel McDougall

Many pigments, such as melanins, are widely distributed throughout the animal kingdom. Others have arisen as novelties in particular lineages, for example, the Green Fluorescent Protein (GFP) found in cnidarians. While GFPs, widely used as fluorescent tags in biomedical research, are the most famous cnidarian example, other novel proteins have also been identified within this phylum. A blue protein that contains a Kringle (KR) domain inserted within a Frizzled cysteine-rich domain (Fz-CRD) was previously described from the jellyfish Rhizostoma pulmo (named rpulFKz1), however little is known about this pigment’s evolution or distribution among cnidarians. We performed a systematic search for homologs of this protein in published genomes and transcriptomes of 93 cnidarians. Phylogenetic analyses revealed eight predicted proteins that possess both domains in the same arrangement and that fall within the same clade as rpulFKz1. The sequence of one of these proteins contains motifs that match sequenced peptides of Cassio Blue, the blue pigment from Cassiopea xamachana. Another one of these proteins belongs to Stomolophus meleagris, and chemical studies on blue pigments that may occur in this genus have shown similarities to rpulFKz1 and Cassio Blue. Therefore, we hypothesize that the eight rpulFKz1 homologs identified are also pigment precursors. All precursors identified were exclusive to jellyfish in the order Rhizostomeae, so we herein name this new pigment family “rhizostomins.” Not all rhizostomes analyzed are blue, however, so these rhizostomin proteins may also be responsible for other colors, or perform other biochemical and biophysical roles. Previous studies have hypothesized that cnidarian pigments are photoprotective, and this study serves as basis for future investigations not only on the function of rhizostomins, but also on potential biotechnological applications for these proteins.


2020 ◽  
Vol 159 ◽  
pp. 111521 ◽  
Author(s):  
Samantha M. Iliff ◽  
Eliza R. Wilczek ◽  
Rachel J. Harris ◽  
Ryan Bouldin ◽  
Elizabeth W. Stoner
Keyword(s):  

Oceans ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 174-180
Author(s):  
William K. Fitt ◽  
Dietrich K. Hofmann

Benzophenones are UV-blockers found in most common sunscreens. The ability of Scyphozoan planula larvae of Cassiopea xamachana and C. frondosa to swim and complete metamorphosis in concentrations 0–228 µg/L benzophenone-3 (oxybenzone) was tested. Planulae of both species swam in erratic patterns, 25–30% slower, and experienced significant death (p < 0.05) in the highest concentrations of oxybenzone tested, whereas the larvae exhibited normal swimming patterns and no death in ≤2.28 µg/L oxybenzone. In addition, metamorphosis decreased 10–30% over 3 days for both species maintained in 228 µg/L oxybenzone. These effects do not involve symbiotic dinoflagellates, as planulae larvae of Cassiopea sp. are aposymbiotic. It is concluded that oxybenzone can have a detrimental impact on these jellyfish.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Cheryl L. Ames ◽  
Anna M. L. Klompen ◽  
Krishna Badhiwala ◽  
Kade Muffett ◽  
Abigail J. Reft ◽  
...  

GigaScience ◽  
2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Aki Ohdera ◽  
Cheryl L Ames ◽  
Rebecca B Dikow ◽  
Ehsan Kayal ◽  
Marta Chiodin ◽  
...  

Abstract Background Anthozoa, Endocnidozoa, and Medusozoa are the 3 major clades of Cnidaria. Medusozoa is further divided into 4 clades, Hydrozoa, Staurozoa, Cubozoa, and Scyphozoa—the latter 3 lineages make up the clade Acraspeda. Acraspeda encompasses extraordinary diversity in terms of life history, numerous nuisance species, taxa with complex eyes rivaling other animals, and some of the most venomous organisms on the planet. Genomes have recently become available within Scyphozoa and Cubozoa, but there are currently no published genomes within Staurozoa and Cubozoa. Findings Here we present 3 new draft genomes of Calvadosia cruxmelitensis (Staurozoa), Alatina alata (Cubozoa), and Cassiopea xamachana (Scyphozoa) for which we provide a preliminary orthology analysis that includes an inventory of their respective venom-related genes. Additionally, we identify synteny between POU and Hox genes that had previously been reported in a hydrozoan, suggesting this linkage is highly conserved, possibly dating back to at least the last common ancestor of Medusozoa, yet likely independent of vertebrate POU-Hox linkages. Conclusions These draft genomes provide a valuable resource for studying the evolutionary history and biology of these extraordinary animals, and for identifying genomic features underlying venom, vision, and life history traits in Acraspeda.


Author(s):  
Aki H. Ohdera ◽  
Michael J. Abrams ◽  
Cheryl L. Ames ◽  
David M. Baker ◽  
Luis P. Suescún-Bolívar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document