Neoarchaean Felsic Volcanic Rocks in Tracing Evolution of Arcs: An Insight from Geochemical Data of the Gadag Schist Belt, Western Dharwar Craton

2021 ◽  
Vol 97 (4) ◽  
pp. 351-362
Author(s):  
V. S. Hedge ◽  
Fernando Corfu ◽  
Hartwig E. Frimmel ◽  
R. H. Sawkar ◽  
M. M. Korkoppa
2019 ◽  
Vol 109 (1) ◽  
pp. 101-125 ◽  
Author(s):  
Máté Szemerédi ◽  
Réka Lukács ◽  
Andrea Varga ◽  
István Dunkl ◽  
Sándor Józsa ◽  
...  

AbstractTwo distinct Permian volcanic epochs were revealed in the Pannonian Basin (eastern Central Europe) by U–Pb zircon geochronology: an older one (~ 281 Ma, Cisuralian) in the ALCAPA Mega-unit (Central Transdanubia, Hungary) and a younger volcanic episode (~ 267–260 Ma, Guadalupian) in the Tisza Mega-unit (Southern Transdanubia and the eastern Pannonian Basin, Hungary). The former is represented by dacitic subvolcanic rocks (dykes) and lavas, while the latter is dominantly by crystal-rich rhyolitic–rhyodacitic/dacitic ignimbrites and subordinate rhyodacitic/dacitic lavas. Whole-rock (major and trace element) geochemical data and zircon U–Pb ages suggest close relationship between the samples of Central Transdanubia and volcanic rocks of the Northern Veporic Unit (Western Carpathians, Slovakia), both being part of the ALCAPA Mega-unit. Such correlation was also revealed between the Permian felsic volcanic rocks of the Apuseni Mts (Romania) and the observed samples of Southern Transdanubia and the eastern Pannonian Basin that are parts of the Tisza Mega-unit. The older volcanic rocks (~ 281–265 Ma) could be linked to post-orogenic tectonic movements, however, the youngest samples (~ 260 Ma, eastern Pannonian Basin, Tisza Mega-unit) could be formed in the extensional setting succeeding the post-collisional environment. On the whole, the observed Permian magmatic rocks show significant similarity with those of the Western Carpathians.


2020 ◽  
Author(s):  
Anshuman Giri ◽  
Rajagopal Anand

<p>The archaean greenstone belts, dominated by mafic to felsic volcanic rocks followed by younger granitic intrusions occurs associated with volcano-sedimentary sequences. The Dharwar Super group (2600 to 2900 Ma) of rocks in western Dharwar craton, underlie the older TTG gneisses. The Shimoga greenstone belt (SGB) of WDC constitute the basal polymictic conglomerate along with quartzite, pyroclastic rocks, carbonaceous rocks, greywacke-argillite sequences with a thick pile of mafic and felsic metavolcanic rocks (BADR). These rocks are suffered from greenschist to lower amphibolite grade of metamorphism. The Medur metavolcanic volcanic rocks give an age of 2638 ± 66 Ma (1), whereas the Daginakatte felsic volcanic rocks give an age of 2601 ± 6 Ma (2). The present studied age of 2638 ± 66 Ma, tells about the cessation of mafic magmatism in WDC. The metavolcanic rocks of the Medur formation are tholeiitic to calc-alkaline in nature. These rocks show flat to LREE enriched REE pattern with negative europium anomaly. And also show enrichment in LILE and depletion in HFSE elements with significant Nb-Ta anomaly. The geochemical and the isotope data suggest the involvement of partial melting of the depleted mantle by the slab components and assimilation fractional crystallization (AFC) processes for the magma generation. The SGB metavolcanic rocks have 143Nd/144Nd ratios (0.511150 to .513076) and εNd values of -3.1 to -5.5 and the negative εNd values  for the rocks is due to the crustal contamination of the magma in a shallow marine subduction setting. The parental magmas were derived from melting in the mantle wedge fluxed by slab derived fluids and slab components followed by assimilation fractional crystallization (AFC) processes involving continental crust in an active continental margin.</p><ul><li>(1) Giri et al., 2019. Lithos, <strong>330-331</strong>, 177-193</li> <li>(2) Trendall et al., 1997a. J. Geol. Soc. India, <strong>50</strong>, 25-50.</li> </ul>


2014 ◽  
Vol 95 ◽  
pp. 65-80 ◽  
Author(s):  
C. Manikyamba ◽  
Sohini Ganguly ◽  
Abhishek Saha ◽  
M. Santosh ◽  
M. Rajanikanta Singh ◽  
...  

2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


2010 ◽  
Vol 47 (12) ◽  
pp. 1481-1506 ◽  
Author(s):  
Vicki McNicoll ◽  
Gerry Squires ◽  
Andrew Kerr ◽  
Paul Moore

The Duck Pond Cu–Zn–Pb–Ag–Au deposit in Newfoundland is hosted by volcanic rocks of the Cambrian Tally Pond group in the Victoria Lake supergroup. In conjunction with the nearby Boundary deposit, it contains 4.1 million tonnes of ore at 3.3% Cu, 5.7% Zn, 0.9% Pb, 59 g/t Ag, and 0.9 g/t Au. The deposits are hosted by altered felsic flows, tuffs, and volcaniclastic sedimentary rocks, and the sulphide ores formed in part by pervasive replacement of unconsolidated host rocks. U–Pb geochronological studies confirm a long-suspected correlation between the Duck Pond and Boundary deposits, which appear to be structurally displaced portions of a much larger mineralizing system developed at 509 ± 3 Ma. Altered aphyric flows in the immediate footwall of the Duck Pond deposit contained no zircon for dating, but footwall stringer-style and disseminated mineralization affects rocks as old as 514 ± 3 Ma at greater depths below the ore sequence. Unaltered mafic to felsic volcanic rocks that occur structurally above the orebodies were dated at 514 ± 2 Ma, and hypabyssal intrusive rocks that cut these were dated at 512 ± 2 Ma. Some felsic samples contain inherited (xenocrystic) zircons with ages of ca. 563 Ma. In conjunction with Sm–Nd isotopic data, these results suggest that the Tally Pond group was developed upon older continental or thickened arc crust, rather than in the ensimatic (oceanic) setting suggested by previous studies.


Sign in / Sign up

Export Citation Format

Share Document