limb outgrowth
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 1)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Hiroyuki Yamaguchi ◽  
Megumi Kitami ◽  
Karin H Uchima Koecklin ◽  
Li He ◽  
Jianbo Wang ◽  
...  

Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, it remains unclear how each IFT protein performs its unique function to regulate endochondral ossification. Here, we show that intraflagellar transport 20 (IFT20) is required for early chondrogenesis. Utilizing three osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre, Col2-Cre and Aggrecan-CreERT2), we deleted Ift20 to examine its function. While chondrocyte-specific Ift20 deletion with Col2-Cre or Aggrecan-CreERT2 drivers did not cause overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) resulted in shortened limb outgrowth. Although primary cilia were not formed in Ift20:Prx1-Cre mice, ciliary Hedgehog signaling was only moderately affected. Interestingly, loss of Ift20 lead to upregulation of Fgf18 expression resulting in ERK1/2 activation and sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate a novel mechanism of IFT20 in early chondrogenesis during endochondral ossification.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Joseph Pickering ◽  
Constance A Rich ◽  
Holly Stainton ◽  
Cristina Aceituno ◽  
Kavitha Chinnaiya ◽  
...  

The longstanding view of how proliferative outgrowth terminates following the patterning phase of limb development involves the breakdown of reciprocal extrinsic signalling between the distal mesenchyme and the overlying epithelium (e-m signalling). However, by grafting distal mesenchyme cells from late stage chick wing buds to the epithelial environment of younger wing buds, we show that this mechanism is not required. RNA sequencing reveals that distal mesenchyme cells complete proliferative outgrowth by an intrinsic cell cycle timer in the presence of e-m signalling. In this process, e-m signalling is required permissively to allow the intrinsic cell cycle timer to run its course. We provide evidence that a temporal switch from BMP antagonism to BMP signalling controls the intrinsic cell cycle timer during limb outgrowth. Our findings have general implications for other patterning systems in which extrinsic signals and intrinsic timers are integrated.


2018 ◽  
Author(s):  
Joseph Pickering ◽  
Kavitha Chinnaiya ◽  
Constance A. Rich ◽  
Patricia Saiz-Lopez ◽  
Maria A. Ros ◽  
...  

The longstanding view of how proliferative outgrowth terminates following the patterning phase of limb development involves the breakdown of reciprocal extrinsic signalling between the mesenchyme and the overlying epithelium (e-m signalling). However, by grafting mesenchyme cells from late stage chick wing buds to an early epithelial environment we show that this mechanism is not required. RNA sequencing reveals that mesenchyme cells terminate growth by an intrinsic cell cycle timer in the presence of e-m signalling. In this process, e-m signalling is required permissively to allow the intrinsic cell cycle timer to run its course. We provide evidence that a temporal switch from BMP antagonism to BMP signalling controls the intrinsic cell cycle timer during limb outgrowth. Our findings have general implications for other patterning systems in which extrinsic signals and intrinsic timers are integrated.


2015 ◽  
Vol 112 (16) ◽  
pp. 5075-5080 ◽  
Author(s):  
Ryutaro Akiyama ◽  
Hiroko Kawakami ◽  
Julia Wong ◽  
Isao Oishi ◽  
Ryuichi Nishinakamura ◽  
...  

Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e37826 ◽  
Author(s):  
Kyung-Suk Choi ◽  
Chanmi Lee ◽  
Danielle M. Maatouk ◽  
Brian D. Harfe
Keyword(s):  

2010 ◽  
Vol 339 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Tracie Pennimpede ◽  
Don A. Cameron ◽  
Glenn A. MacLean ◽  
Martin Petkovich
Keyword(s):  

2009 ◽  
Vol 327 (2) ◽  
pp. 516-523 ◽  
Author(s):  
Danielle M. Maatouk ◽  
Kyung-Suk Choi ◽  
Cortney M. Bouldin ◽  
Brian D. Harfe

Sign in / Sign up

Export Citation Format

Share Document