african lungfish
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 12)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yoshinao Katsu ◽  
Shin Oana ◽  
Xiaozhi Lin ◽  
Susumu Hyodo ◽  
Michael E. Baker

Abstract A distinct mineralocorticoid receptor (MR) ortholog first appears in cartilaginous fishes, such as sharks, skates, rays and chimaeras. Although aldosterone, the main physiological mineralocorticoid in humans and other terrestrial vertebrates, is a transcriptional activator of skate MR and elephant shark MR, aldosterone is not synthesized by cartilaginous fishes. Aldosterone, first appears in lungfish, which are lobe-finned fish that are forerunners of terrestrial vertebrates. Aldosterone activation of the MR regulates internal homeostasis of water, sodium and potassium, which was critical in the conquest of land by vertebrates. We studied transcriptional activation of the slender African lungfish (Protopterus dolloi) MR by aldosterone, other corticosteroids and progesterone and find that aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and progesterone have half-maximal responses (EC50s) below 1 nM and are potential physiological mineralocorticoids. In contrast, EC50s for corticosterone and cortisol were 23 nM and 66 nM, respectively. Unexpectedly, truncated lungfish MR, consisting of the DNA-binding domain, hinge domain and steroid-binding domain, had a stronger response to aldosterone, other corticosteroids and progesterone than did full-length lungfish MR, indicating that an allosteric action of the N-terminal domain represses steroid activation of lungfish MR. This contrasts to human MR in which the N-terminal domain contains an activation function. BLAST searches of GenBank did not retrieve a GR ortholog, leading us to test dexamethasone and triamcinolone for activation of lungfish MR. At 10 nM, both synthetic glucocorticoids are about 4-fold stronger than 10 nM aldosterone in activating full-length lungfish MR, leading us to propose that lungfish MR also functions as a GR.


2021 ◽  
Author(s):  
Yoshinao Katsu ◽  
Shin Oana ◽  
Xiaozhi Lin ◽  
Susumu Hyodo ◽  
Michael E. Baker

A distinct mineralocorticoid receptor (MR) ortholog first appears in cartilaginous fishes, such as sharks, skates, rays and chimaeras. Although aldosterone, the main physiological mineralocorticoid in humans and other terrestrial vertebrates, is a transcriptional activator of skate MR and elephant shark MR, aldosterone is not synthesized by cartilaginous fishes. Aldosterone, first appears in lungfish, which are lobe-finned fish that are forerunners of terrestrial vertebrates. Aldosterone activation of the MR regulates internal homeostasis of water, sodium and potassium, which was critical in the conquest of land by vertebrates. We studied transcriptional activation of the slender African lungfish (Protopterus dolloi) MR by aldosterone, other corticosteroids and progesterone and find that aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and progesterone have half-maximal responses (EC50s) below 1 nM and are potential physiological mineralocorticoids. In contrast, EC50s for corticosterone and cortisol were 23 nM and 66 nM, respectively. Unexpectedly, truncated lungfish MR, consisting of the DNA-binding domain, hinge domain and steroid-binding domain, had a stronger response to aldosterone, other corticosteroids and progesterone than did full-length lungfish MR, indicating that an allosteric action of the N-terminal domain represses steroid activation of lungfish MR. This contrasts to human MR in which the N-terminal domain contains an activation function. BLAST searches of GenBank did not retrieve a GR ortholog, leading us to test dexamethasone and triamcinolone for activation of lungfish MR. At 10 nM, both synthetic glucocorticoids are about 4-fold stronger than 10 nM aldosterone in activating full-length lungfish MR, leading us to propose that lungfish MR also functions as a GR.


Cell ◽  
2021 ◽  
Vol 184 (5) ◽  
pp. 1362-1376.e18 ◽  
Author(s):  
Kun Wang ◽  
Jun Wang ◽  
Chenglong Zhu ◽  
Liandong Yang ◽  
Yandong Ren ◽  
...  
Keyword(s):  

2020 ◽  
Vol 287 (1935) ◽  
pp. 20192939
Author(s):  
Kellen Matos Verissimo ◽  
Louise Neiva Perez ◽  
Aline Cutrim Dragalzew ◽  
Gayani Senevirathne ◽  
Sylvain Darnet ◽  
...  

Salamanders, frog tadpoles and diverse lizards have the remarkable ability to regenerate tails. Palaeontological data suggest that this capacity is plesiomorphic, yet when the developmental and genetic architecture of tail regeneration arose is poorly understood. Here, we show morphological and molecular hallmarks of tetrapod tail regeneration in the West African lungfish Protopterus annectens , a living representative of the sister group of tetrapods. As in salamanders, lungfish tail regeneration occurs via the formation of a proliferative blastema and restores original structures, including muscle, skeleton and spinal cord. In contrast with lizards and similar to salamanders and frogs, lungfish regenerate spinal cord neurons and reconstitute dorsoventral patterning of the tail. Similar to salamander and frog tadpoles, Shh is required for lungfish tail regeneration. Through RNA-seq analysis of uninjured and regenerating tail blastema, we show that the genetic programme deployed during lungfish tail regeneration maintains extensive overlap with that of tetrapods, with the upregulation of genes and signalling pathways previously implicated in amphibian and lizard tail regeneration. Furthermore, the lungfish tail blastema showed marked upregulation of genes encoding post-transcriptional RNA processing components and transposon-derived genes. Our results show that the developmental processes and genetic programme of tetrapod tail regeneration were present at least near the base of the sarcopterygian clade and establish the lungfish as a valuable research system for regenerative biology.


2020 ◽  
Vol 51 (12) ◽  
pp. 5074-5083
Author(s):  
Martin Sserwadda ◽  
Nancy Nevejan ◽  
Ronald Ntanzi ◽  
Pieter Cornillie ◽  
Wim Van den Broeck ◽  
...  

2020 ◽  
Vol 90 ◽  
pp. 102594
Author(s):  
Daniela Amelio ◽  
Filippo Garofalo
Keyword(s):  

2020 ◽  
Author(s):  
Kellen Matos Verissimo ◽  
Louise Neiva Perez ◽  
Aline Cutrim Dragalzew ◽  
Gayani Senevirathne ◽  
Sylvain Darnet ◽  
...  

AbstractSalamanders, frog tadpoles, and diverse lizards have the remarkable ability to regenerate tails. Paleontological data suggests that this capacity is plesiomorphic, yet when the developmental and genetic architecture of tail regeneration arose is poorly understood. Here we show morphological and molecular hallmarks of tetrapod tail regeneration in the West African lungfish Protopterus annectens, a living representative of the sister group of tetrapods. As in salamanders, lungfish tail regeneration occurs via formation of a proliferative blastema and restores original structures, including muscle, skeleton and spinal cord. In contrast to lizards and similar to salamanders and frogs, lungfish regenerate spinal cord neurons and reconstitute dorsoventral patterning of the tail. Similar to salamander and frog tadpoles, Shh is required for lungfish tail regeneration. Through RNA-seq analysis of uninjured and regenerating tail blastema, we show that the genetic program deployed during lungfish tail regeneration maintains extensive overlap with that of tetrapods, with the upregulation of genes and signaling pathways previously implicated in amphibian and lizard tail regeneration. Furthermore, the lungfish tail blastema showed marked upregulation of genes encoding post-transcriptional RNA processing components and transposon-derived genes. Our results show that developmental processes and genetic program of tetrapod tail regeneration were present at least near the base of the sarcopterygian clade and establish the lungfish as a valuable research system for regenerative biology.


Sign in / Sign up

Export Citation Format

Share Document