donor cell type
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 1)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Sruti Bheri ◽  
Jessica R Hoffman ◽  
Hyun-Ji Park ◽  
Michael E Davis

Introduction: Myocardial infarction (MI) is a leading cause of mortality worldwide. The potency of cell-based therapies for MI is increasingly attributed to the release of extracellular vesicles (EVs) which consist of a lipid/protein membrane and encapsulate RNA cargo. Specifically, EVs from ckit+ progenitor cells (CPCs) and mesenchymal stromal cells (MSCs) are shown to be pro-reparative, with clinical trials ongoing. Despite copious research into EV cargo, the role of donor cell type on EV membrane composition and its effects on EV uptake mechanism by recipient cells remain unclear. This is crucial for designing EV-based therapeutics as uptake mechanism dictates the functionality of the cargo. Thus, we hypothesized that (1) EV membrane composition varies by donor cell type and (2) this variation covaries with the mechanism of uptake. Methods: EVs were isolated using differential ultracentrifugation from four cardiac cell types: CPCs, MSCs, cardiac endothelial cells (CECs) and rat cardiac fibroblasts (RCFs) grown in normoxia (18% O 2 ) or hypoxia (1% O 2 ) to mimic ischemic conditions. EVs were characterized for size and concentration. EV lipid membrane profile was assessed through LC/MS/MS. Donor cell’s role on EV uptake mechanism was determined by inhibiting known uptake pathways (clathrin, dynamin, macropinocytosis and caveolae/lipid raft) with small molecules and quantifying CEC/RCF endocytosis of EVs with flow cytometry. Finally, partial least squares regression was used to determine the most important lipids involved in EV uptake mechanism. Results: EVs were successfully isolated and characterized. The EV membrane lipid profiles clustered by donor cell type. Uptake mechanism of EVs varied based on both donor and recipient cell type with dynamin mediated endocytosis being the most common. Further, the uptake mechanism was independent of normoxic/hypoxic conditioning. Finally, supervised learning methods revealed specific lipid classes (sphingolipids and glycerophospholipids) covaried with EV uptake mechanism. Conclusion: This work highlights the importance of the understudied EV membrane and its role in delivering therapeutic cargo. Active donor cell selection for efficient EV uptake will allow for more potent EV-based MI therapies.


Oncotarget ◽  
2018 ◽  
Vol 9 (25) ◽  
pp. 17797-17809 ◽  
Author(s):  
Eleni-Dimitra Papanagnou ◽  
Evangelos Terpos ◽  
Efstathios Kastritis ◽  
Issidora S. Papassideri ◽  
Ourania E. Tsitsilonis ◽  
...  

2016 ◽  
Vol 231 ◽  
pp. S13
Author(s):  
Sezen Arat ◽  
Arzu Tas Caputcu ◽  
Mesut Cevik ◽  
Tolga Akkoc ◽  
Gaye Cetinkaya

2016 ◽  
Vol 28 (2) ◽  
pp. 142
Author(s):  
N. L. Selokar ◽  
P. Sharma ◽  
D. Kumar ◽  
R. K. Sharma ◽  
P. S. Yadav

Selection of the donor cell type for somatic cell NT is very important based on its capability to be reprogrammed by the oocyte cytoplasm. A very wide variety of donor cells of different origin have been used for somatic cell NT, having differences in the overall efficiency. The aim of this study was to compare the cloning efficiency of donor cells derived from the ventral side of origin of tail skin and seminal plasma of a buffalo bull (age: 3 years old). Somatic cells from skin and seminal plasma were isolated and cultured as described by Selokar et al. (2014 PLOS ONE 9(3), e90755). Cultured seminal plasma cells had classic epithelial morphology, grew in clusters, were hexagonal in outline shape, and were positive for immunocytochemical detection of keratin marker, indicating that they were of epithelial origin, whereas tail-derived cells were spindle in shape and found positive for vimentin expression, indicating the fibroblast origin. To determine their reprogramming potential, these cells between passages 5 to 8 were used for the production of buffalo cloned embryos by handmade cloning as per the method described by Selokar et al. (2012 Theriogenology 78, 930–936). In brief, oocytes were isolated from slaughter-house ovaries and matured in vitro. After 21 h of maturation, cumulus cell mass and zona pellucida were removed by enzymatic treatment, hyaluronidase and pronase, respectively. Zona-free buffalo oocytes were enucleated on the basis of protrusion cone. A single somatic cell was attached to an enucleated oocyte with addition of phytohemagglutinin, followed by sandwich type of electrofusion between the somatic cell-bearing oocyte and enucleated oocyte using BTX electrofusion machine. Fused oocytes were activated by 4 μM calcium ionophore for 5 min and incubated in 2 mM 6-DMAP for 4 h and were cultured in K-RVCL-50® medium for 7 days on a flat surface in a 4-well dish in an incubator (5% CO2 and 38.5°C temperature). The total numbers of embryos reconstructed from tail-derived cells and semen-derived cells were 132 and 158, respectively. Cleavage and blastocyst rate were calculated from total embryos cultured, and data were analysed by Student’s t-test. We found no significant effect on both cleavage (89.30 ± 2.1 v. 94.1 ± 0.6) and blastocyst rate (40.7 ± 4.0 v. 43.1 ± 9.6) for the embryos produced from cells derived from tail and seminal plasma. To study the in vivo developmental competence of embryos derived from the 2 donor cell types, one embryo of each cell type was transferred into 6 recipient animals. Pregnancies were confirmed by ultrasonography at 30 to 35 days after transfer and monitored regularly at 15-day intervals up to 90 days. Three pregnancies were found for tail-derived cells, whereas no pregnancy was obtained for semen-derived cells. Out of 3 pregnancies obtained, 1 embryonic death was observed before 45 days, and 2 are continuing at advance stage. In conclusion, tail-derived cells are the better donor cell choice for buffalo somatic cell NT research. Currently, our focus is on epigenetic reprogramming behaviour of these 2 different cell types to elucidate the possible reprogramming mechanism.


Haematologica ◽  
2014 ◽  
Vol 100 (1) ◽  
pp. 32-41 ◽  
Author(s):  
I. Dorn ◽  
K. Klich ◽  
M. J. Arauzo-Bravo ◽  
M. Radstaak ◽  
S. Santourlidis ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76422 ◽  
Author(s):  
Ryutaro Hirasawa ◽  
Shogo Matoba ◽  
Kimiko Inoue ◽  
Atsuo Ogura

2013 ◽  
Vol 41 (8) ◽  
pp. S27
Author(s):  
Isabel Dorn ◽  
Katharina Klich ◽  
Martina Radstaak ◽  
Katherina Psathaki ◽  
Marcos Arauzo-Bravo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document