target track
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 23)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lubna Farhi

Vehicle position estimation for wireless network has been studied in many fields since it has the ability to provide a variety of services, such as detecting oncoming collisions and providing warning signals to alert the driver. The services provided are often based on collaboration among vehicles that are equipped with relatively simple motion sensors and GPS units. Awareness of its precise position is vital to every vehicle, so that it can provide accurate data to its peers. Currently, typical positioning techniques integrate GPS receiver data and measurements of the vehicles motion. However, when the vehicle passes through an environment that creates multipath effect, these techniques fail to produce high position accuracy that they attain in open environments. Unfortunately, vehicles often travel in environments that cause multipath effect, such as areas with high buildings, trees, or tunnels. The goal of this research is to minimize the multipath effect with respect to the position accuracy of vehicles. The proposed technique first detects whether there is disturbance in the vehicle position estimate that is caused by the multipath effect using hypothesis test. This technique integrates all information with the vehicle's own data and the Constrained Weighted Least Squares (CWLS) optimization approach with time difference of arrival (TDOA) technique and minimizes the position estimate error of the vehicle. Kalman filter is used for smoothing range data and mitigating the NLOS errors. The positioning problem is formulated in a state-space framework and the constraints on system states are considered explicitly. The proposed recursive positioning algorithm will be comparatively more robust to measurement errors because it updates the technique that feeds the position corrections back to the Kalman Filter as compared with a Kalman tracking algorithm that estimates the target track directly from the TDOA measurements. It compensates the GPS data and decreases random error influence to the position precision. The new techniques presented in this thesis decrease the error in the position estimate. Simulation results show that the proposed tracking algorithm can improve the accuracy significantly.


2021 ◽  
Author(s):  
Lubna Farhi

Vehicle position estimation for wireless network has been studied in many fields since it has the ability to provide a variety of services, such as detecting oncoming collisions and providing warning signals to alert the driver. The services provided are often based on collaboration among vehicles that are equipped with relatively simple motion sensors and GPS units. Awareness of its precise position is vital to every vehicle, so that it can provide accurate data to its peers. Currently, typical positioning techniques integrate GPS receiver data and measurements of the vehicles motion. However, when the vehicle passes through an environment that creates multipath effect, these techniques fail to produce high position accuracy that they attain in open environments. Unfortunately, vehicles often travel in environments that cause multipath effect, such as areas with high buildings, trees, or tunnels. The goal of this research is to minimize the multipath effect with respect to the position accuracy of vehicles. The proposed technique first detects whether there is disturbance in the vehicle position estimate that is caused by the multipath effect using hypothesis test. This technique integrates all information with the vehicle's own data and the Constrained Weighted Least Squares (CWLS) optimization approach with time difference of arrival (TDOA) technique and minimizes the position estimate error of the vehicle. Kalman filter is used for smoothing range data and mitigating the NLOS errors. The positioning problem is formulated in a state-space framework and the constraints on system states are considered explicitly. The proposed recursive positioning algorithm will be comparatively more robust to measurement errors because it updates the technique that feeds the position corrections back to the Kalman Filter as compared with a Kalman tracking algorithm that estimates the target track directly from the TDOA measurements. It compensates the GPS data and decreases random error influence to the position precision. The new techniques presented in this thesis decrease the error in the position estimate. Simulation results show that the proposed tracking algorithm can improve the accuracy significantly.


Author(s):  
Guoliang Zhang ◽  
Lin Ma ◽  
Jianjun Ge ◽  
De Zhang ◽  
Guanghong Liu ◽  
...  

2020 ◽  
Vol 12 (19) ◽  
pp. 3238
Author(s):  
Rui Wang ◽  
Jiong Cai ◽  
Cheng Hu ◽  
Chao Zhou ◽  
Tianran Zhang

The use of radar to monitor insect migration is of great significance for pest control and biological migration mechanism research. However, migrating insects usually have small radar-cross-section (RCS) and are accompanied by maneuvering. The current radar detection algorithms mainly have contradictions in detection performance and computational complexity. So it is difficult for traditional radar detection algorithms to detect them effectively. Hence, a novel coherent integration detection algorithm based on dynamic programming (DP) and fractional Fourier transforming (FrFT) is proposed. By combining the advantages of DP and FrFT, the proposed DP-FrFT method can quickly search the target track, and simultaneously perform parameters estimation and motion compensation, achieving high integration gain with relatively low time consumption. The high efficiency of the method is verified with a large number of simulations and sufficient field experiments.


Author(s):  
Zhipeng Li ◽  
Xiaolan Li ◽  
Ming Shi ◽  
Wenli Song ◽  
Guowei Zhao ◽  
...  

Snowboarding is a kind of sport that takes snowboarding as a tool, swivels and glides rapidly on the specified slope line, and completes all kinds of difficult actions in the air. Because the sport is in the state of high-speed movement, it is difficult to direct guidance during the sport, which is not conducive to athletes to find problems and correct them, so it is necessary to track the target track of snowboarding. The target tracking algorithm is the main solution to this task, but there are many problems in the existing target tracking algorithm that have not been solved, especially the target tracking accuracy in complex scenes is insufficient. Therefore, based on the advantages of the mean shift algorithm and Kalman algorithm, this paper proposes a better tracking algorithm for snowboard moving targets. In the method designed in this paper, in order to solve the problem, a multi-algorithm fusion target tracking algorithm is proposed. Firstly, the SIFT feature algorithm is used for rough matching to determine the fuzzy position of the target. Then, the good performance of the mean shift algorithm is used to further match the target position and determine the exact position of the target. Finally, the Kalman filtering algorithm is used to further improve the target tracking algorithm to solve the template trajectory prediction under occlusion and achieve the target trajectory tracking algorithm design of snowboarding.


Sign in / Sign up

Export Citation Format

Share Document