virus particle production
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 0)

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2399
Author(s):  
Ermela Paparisto ◽  
Nina R. Hunt ◽  
Daniel S. Labach ◽  
Macon D. Coleman ◽  
Eric J. Di Gravio ◽  
...  

Survival following Ebola virus (EBOV) infection correlates with the ability to mount an early and robust interferon (IFN) response. The host IFN-induced proteins that contribute to controlling EBOV replication are not fully known. Among the top genes with the strongest early increases in expression after infection in vivo is IFN-induced HERC5. Using a transcription- and replication-competent VLP system, we showed that HERC5 inhibits EBOV virus-like particle (VLP) replication by depleting EBOV mRNAs. The HERC5 RCC1-like domain was necessary and sufficient for this inhibition and did not require zinc finger antiviral protein (ZAP). Moreover, we showed that EBOV (Zaire) glycoprotein (GP) but not Marburg virus GP antagonized HERC5 early during infection. Our data identify a novel ‘protagonist–antagonistic’ relationship between HERC5 and GP in the early stages of EBOV infection that could be exploited for the development of novel antiviral therapeutics.


2021 ◽  
Vol 102 (8) ◽  
Author(s):  
Sutha Sangiambut ◽  
Natcha Promphet ◽  
Suwipa Chaiyaloom ◽  
Chunya Puttikhunt ◽  
Panisadee Avirutnan ◽  
...  

The capsid protein (C) of dengue virus is required for viral infectivity as it packages viral RNA genome into infectious particles. C exists as a homodimer that forms via hydrophobic interactions between the α2 and α4 helices of monomers. To identify C region(s) important for virus particle production, a complementation system was employed in which single-round infectious particles are generated by trans-encapsidation of a viral C-deleted genome by recombinant C expressed in mosquito cells. Mutants harbouring a complete α3 deletion, or a dual Ile65-/Trp69-to-Ala substitution in the α3 helix, exhibited reduced production of infectious virus. Unexpectedly, higher proportions of oligomeric C were detected in cells expressing both mutated forms as compared with the wild-type counterpart, indicating that the α3 helix, through its internal hydrophobic residues, may down-modulate oligomerization of C during particle formation. Compared with wild-type C, the double Ile65-/Trp69 to Ala mutations appeared to hamper viral infectivity but not C and genomic RNA incorporation into the pseudo-infectious virus particles, suggesting that increased C oligomerization may impair DENV replication at the cell entry step.


2021 ◽  
Author(s):  
Jieshi Yu ◽  
Chen Huang ◽  
Zizhang Sheng ◽  
Zhao Wang ◽  
Feng Li ◽  
...  

The newly identified influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range with broad geographical distribution. Despite the first appearance in U.S. pig herds in 2011, subsequent studies demonstrate that IDV is widespread in global cattle populations, supporting a theory that IDV utilizes bovines as a primary reservoir. Our investigation of the two reference influenza D viruses, D/swine/Oklahoma/1334/2011 (OK/11) isolated from swine and D/Bovine/Oklahoma/660/2013 (660/13) from cattle, revealed that 660/13 replicated to titers approximately 100-fold higher than those for OK/11 in multiple cell lines. By using a recently developed IDV reverse genetics system derived from low-titer OK/11, we generated recombinant chimeric OK/11 viruses in that one of the seven genome segments was replaced with its counterpart from high-titer 660/13 virus. Further characterization demonstrated that the replication level of the chimeric OK/11 virus was significantly increased only when harboring the 660/13 nucleoprotein (NP) segment. Finally, through both gain-of-function and loss-of-function experiments, we identified that one amino acid residue at position 381, located in the body domain of NP protein, was a key determinant for the replication difference between the low-titer OK/11 virus and the high-titer 660/13 virus. Taken together, our findings provide important insight into IDV replication fitness mediated by the NP protein, which should facilitate future study of infectious virus particle production mechanism of IDV. IMPORTANCE Little is known about virus infection and production mechanism for newly discovered influenza D virus (IDV) that utilizes bovines as a primary reservoir with frequent spillover to new hosts including swine. In this study, we showed that two well-characterized IDVs, 660/13 replicated more efficiently (approximately 100-fold higher) than OK/11. Using a recently developed IDV reverse genetics system, we identified viral nucleoprotein (NP) as a primary determinant of the different replication capacity observed between these two nearly identical viruses. Mechanistic investigation further revealed that a mutation at NP position 381 evidently modulated virus fitness. Taken together, these observations indicate that IDV NP protein performs a critical role in infectious virus particle production. Our study thus illustrates a NP-based mechanism for efficient IDV infection and production in vitro .


2018 ◽  
Vol 132 (1) ◽  
pp. jcs217042 ◽  
Author(s):  
Susan Lassen ◽  
Cordula Grüttner ◽  
Van Nguyen-Dinh ◽  
Eva Herker

2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Jordan T. Becker ◽  
Nathan M. Sherer

ABSTRACT Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans. In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5′ packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV-1) virus particles at the plasma membrane (PM). Artificially tethering viral mRNAs encoding Gag capsid proteins (gag-pol mRNAs) to distinct non-PM subcellular locales, such as cytoplasmic vesicles or the actin cytoskeleton, markedly alters Gag subcellular distribution, relocates sites of assembly, and reduces net virus particle production. These observations support a model for native HIV-1 assembly wherein HIV-1 gag-pol mRNA localization helps to confine interactions between Gag, viral RNAs, and host determinants in order to ensure virion production at the right place and right time. Direct perturbation of HIV-1 mRNA subcellular localization may represent a novel antiviral strategy.


2015 ◽  
Vol 199 ◽  
pp. 31-41 ◽  
Author(s):  
Anastasia Shevtsova-Horoz ◽  
Manel Essaidi-Laziosi ◽  
Laurent Roux

2015 ◽  
Vol 11 (1) ◽  
pp. e1004573 ◽  
Author(s):  
Marion Poenisch ◽  
Philippe Metz ◽  
Hagen Blankenburg ◽  
Alessia Ruggieri ◽  
Ji-Young Lee ◽  
...  

2013 ◽  
Vol 173 (2) ◽  
pp. 354-363 ◽  
Author(s):  
Carole Bampi ◽  
Anne-Sophie Gosselin Grenet ◽  
Grégory Caignard ◽  
Pierre-Olivier Vidalain ◽  
Laurent Roux

Virology ◽  
2011 ◽  
Vol 410 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Vincent Miazza ◽  
Geneviève Mottet-Osman ◽  
Sergei Startchick ◽  
Christine Chaponnier ◽  
Laurent Roux

Sign in / Sign up

Export Citation Format

Share Document