training symbol
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Xingle Feng ◽  
Mengjie Wang ◽  
Li Chen ◽  
Wenxia Zhu ◽  
Kun Hua

Abstract As a critical technology of 5G air interface waveform, F-OFDM not only inherits the technical advantages of OFDM, but also has outstanding advantages in system flexibility and spectrum efficiency. However, as a multi-carrier technology, it is still extremely sensitive to sample timing offset (STO) and carrier frequency offset (CFO). In this letter, an improved Park frequency domain training sequence (FS-Park) is proposed to complete STO and CFO estimation of F-OFDM system. Firstly, a real-value pseudorandom number (PN) sequence is sent to each subcarrier as training sequence in frequency domain, the corresponding time domain training symbol has a conjugate symmetry structure. Secondly, the training symbol is utilized for timing synchronization, then the fractional frequency offset is estimated based on the cyclic prefix in time domain. Finally, the integer frequency offset is estimated in frequency domain based on the auto-correlation of PN sequence. The simulation results illustrate that the FS-Park algorithm not only has a single pulse timing metric curve and great STO estimation accuracy, but also has better performance of CFO estimation than classical Park algorithm and Liang Xiao's method.


2020 ◽  
Author(s):  
Xingle Feng ◽  
Mengjie Wang ◽  
Li Chen ◽  
Wenxia Zhu ◽  
Kun Hua

Abstract As a critical technology of 5G air interface waveform, F-OFDM not only inherits the technical advantages of OFDM, but also has outstanding advantages in system flexibility and spectrum efficiency. However, as a multi-carrier technology, it is still extremely sensitive to sample timing offset (STO) and carrier frequency offset (CFO). In this letter, an improved Park frequency domain training sequence (FS-Park) is proposed to complete STO and CFO estimation of F-OFDM system. Firstly, a real-value pseudorandom number (PN) sequence is sent to each subcarrier as training sequence in frequency domain, the corresponding time domain training symbol has a conjugate symmetry structure. Secondly, the training symbol is utilized for timing synchronization, then the fractional frequency offset is estimated based on the cyclic prefix in time domain. Finally, the integer frequency offset is estimated in frequency domain based on the auto-correlation of PN sequence. The simulation results illustrate that the FS-Park algorithm not only has a single pulse timing metric curve and great STO estimation accuracy, but also has better performance of CFO estimation than classical Park algorithm and Liang Xiao's method.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091477
Author(s):  
Hongwei Zhao ◽  
Zichun Zhang ◽  
Xiaozhu Shi ◽  
Yihui Yin

The augmentation navigation system based on multi-source information fusion can significantly improve position accuracy, and the multi-source information is usually transmitted through VHF Data Broadcast . Aiming at the burst characteristics of VHF Data Broadcast, this article proposed a novel demodulation algorithm based on open-loop structure. When a VHF Data Broadcast burst is detected, the timing recovery should be finished first, and the value of cross-correlation between the timing-recovered signal and the local training symbol is calculated to complete the frame synchronization. Then, the data-aided and non-data-aided algorithms are used to estimate the frequency offset. Finally, the phase offset is estimated and the carrier synchronization is accomplished. The simulation results demonstrate that the proposed algorithm can quickly accomplished carrier synchronization without using feedback-loop structure, and the bit error rate is less than 10−4 when the signal-to-noise ratio is greater than 17 dB, which satisfy the requirement of receiving VHF Data Broadcast signals in augmentation navigation system. Therefore, the proposed algorithm can be used for receiving VHF Data Broadcast signals.


2018 ◽  
Vol 10 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Shanshan Li ◽  
Mengfan Cheng ◽  
Lei Deng ◽  
Songnian Fu ◽  
Minming Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document