key pole
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Paul Yves Jean Antonio ◽  
Ricardo Ivan ferreira da Trindade ◽  
Maria Helena B. M. Hollanda ◽  
Bruno Giacomini

<p>The Neoproterozoic-Paleozoic transition (~541 Ma) was a turning point in Earth’s history resulting in great biological changes between the microbial Precambrian life and the Ediacaran biotic revolution with the occupation of the sedimentary substrate, the dawn of biomineralization and the appearance of the earliest multicellular organisms. In parallel, this period is marked by a large plate reorganization leading to the assembly of Gondwana and by major climatic changes (extreme glacial events). Due in part to a poor paleomagnetic database for the different cratons in the Ediacarian-Cambrian times, the global paleogeography at that time still remains controversial. In this study we present a new paleomagnetic pole (Q= 6) for the Monteiro dike swarms in the Borborema Province (NE Brazil). They are fine-grained hornblende dolerite dated by U-Pb on zircon at ~538 Ma. Rock magnetic data indicate that magnetite and pyrrhotite are the main remanence carriers. Positive baked-contact tests support the primary remanence obtained for these dikes (19 sites). A positive reversal test (classified C) was also obtained from the 14 sites with normal polarity and the 5 sites with reversed polarity, indicating that the secular variations was eliminated with our sampling. Our new key pole is not consistent with the classical Apparent Polar Wander Path of the West Gondwana which consists of a long track from a southern polar position at ~590 Ma to an equatorial position at ~520 Ma. The Monteiro paleomagnetic pole suggest instead rapid and small oscillations of the APW, or wobbles, after 560 Ma. These rapid oscillations may be related to inertial readjustments in response to true polar wander (TPW) of the spin axis. TPW events have been suggested from 615 to 590 and then from 575 to 565 Ma in previous works. These TPWs are supposedly caused by changes in the inertia tensor of the Earth due to internal mass redistribution, related to rapid changes in subduction velocity. Possible links between these events and life evolution will also be discussed.</p>


2010 ◽  
Vol 183 (3) ◽  
pp. 442-462 ◽  
Author(s):  
Natalia V. Lubnina ◽  
Satu Mertanen ◽  
Ulf Söderlund ◽  
Svetlana Bogdanova ◽  
Tatiana I. Vasilieva ◽  
...  

2009 ◽  
Vol 46 (9) ◽  
pp. 689-705 ◽  
Author(s):  
Steven W. Denyszyn ◽  
Henry C. Halls ◽  
Don W. Davis ◽  
David A.D. Evans

U–Pb baddeleyite ages and paleomagnetic poles obtained for dykes on Devon Island and Ellesmere Island in the Canadian Arctic and the Thule region of Greenland show that they are associated with the Franklin magmatic event. This study is the only one devoted to Franklin igneous rocks where a primary paleomagnetic remanence and U–Pb age have been obtained from the same rocks. Ages from this study range from 721 to 712 Ma, but paleomagnetic directional data show no clear age progression. The paleomagnetic poles from each of the two regional subsets are significantly different at the 95% confidence level from paleomagnetic results previously published for the Franklin event in the Canadian Shield. The difference in the pole locations can be accounted for, to first approximation, by a simple model of early Cenozoic block rotations among the North American plate, Greenland, and a hypothesized ancient microplate comprising Ellesmere, Devon, Cornwallis, and perhaps Somerset islands. A new grand-mean paleopole for the Franklin event, including restoration of Greenland and the proposed “Ellesmere microplate” to North America, is located at (8.4°N, 163.8°E, A95 = 2.8°, N = 78 sites) and is a key pole for Neoproterozoic supercontinent reconstructions.


Sign in / Sign up

Export Citation Format

Share Document