lacertid lizards
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 12)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Emanuel Tschopp ◽  
James G Napoli ◽  
Lukardis C M Wencker ◽  
Massimo Delfino ◽  
Paul Upchurch

Abstract Generally, the species is considered to be the only naturally occurring taxon. However, species recognised and defined using different species delimitation criteria cannot readily be compared, impacting studies of biodiversity through Deep Time. This comparability issue is particularly marked when comparing extant with extinct species, because the only available data for species delimitation in fossils is derived from their preserved morphology, which is generally restricted to osteology in vertebrates. Here, we quantify intraspecific, intrageneric, and intergeneric osteological variability in extant species of lacertid lizards using pairwise dissimilarity scores based on a dataset of 253 discrete osteological characters for 99 specimens referred to 24 species. Variability is always significantly lower intraspecifically than between individuals belonging to distinct species of a single genus, which is in turn significantly lower than intergeneric variability. Average values of intraspecific variability and associated standard deviations are consistent (with few exceptions), with an overall average within a species of 0.208 changes per character scored. Application of the same methods to six extinct lacertid species (represented by 40 fossil specimens) revealed that intraspecific osteological variability is inconsistent, which can at least in part be attributed to different researchers having unequal expectations of the skeletal dissimilarity within species units. Such a divergent interpretation of intraspecific and interspecific variability among extant and extinct species reinforces the incomparability of the species unit. Lacertidae is an example where extant species recognised and defined based on a number of delimitation criteria show comparable and consistent intraspecific osteological variability. Here, as well as in equivalent cases, application of those skeletal dissimilarity values to palaeontological species delimitation potentially provides a way to ameliorate inconsistencies created by the use of morphology to define species.


Cladistics ◽  
2021 ◽  
Author(s):  
Lukardis Charlotte Marie Wencker ◽  
Emanuel Tschopp ◽  
Andrea Villa ◽  
Marc Louis Augé ◽  
Massimo Delfino
Keyword(s):  

Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 155
Author(s):  
Daniel Escoriza ◽  
Félix Amat

South-western Europe has a rich diversity of lacertid lizards. In this study, we evaluated the occupancy patterns and niche segregation of five species of lacertids, focusing on large-bodied species (i.e., adults having >75 mm snout-vent length) that occur in south-western Europe (Italian to the Iberian Peninsula). We characterized the niches occupied by these species based on climate and vegetation cover properties. We expected some commonality among phylogenetically related species, but also patterns of habitat segregation mitigating competition between ecologically equivalent species. We used multivariate ordination and probabilistic methods to describe the occupancy patterns and evaluated niche evolution through phylogenetic analyses. Our results showed climate niche partitioning, but with a wide overlap in transitional zones, where segregation is maintained by species-specific responses to the vegetation cover. The analyses also showed that phylogenetically related species tend to share large parts of their habitat niches. The occurrence of independent evolutionary lineages contributed to the regional species richness favored by a long history of niche divergence.


2020 ◽  
Vol 27 (4) ◽  
pp. 185-194
Author(s):  
Elif Yıldırım
Keyword(s):  

The adult skeletons of lacertid lizards Phoenicolacerta laevis and P. cyanisparsa are described based on cleared-and-stained specimens. In comparison with each lacertid species, there are remarkable differences in both cranial and postcranial bones. These are the shape of some cranial bones such as the premaxilla, nasal, quadrate, squamosal, jugal and dentary and the shape of the ischium and ischio-pubis opening and the number of the last presacral vertebrae with small ribs for the postcranial skeletal elements. These detailed descriptions provide as a model to compare lacertid lizards and contribute to understand squamate osteology for further studies.


2020 ◽  
Author(s):  
Andran Abramjan ◽  
Marine Arakelyan ◽  
Daniel Frynta

Abstract Sexual selection often leads to evolution of conspicuous signals, raising the chances of attracting not only potential mates, but also predators. In lacertid lizards, ultraviolet (UV)–blue spots on flanks and shoulders represent such a trait. Some level of correlation between male and female ornamentation is also known to exist. Therefore, the phenotype of females may change in the absence of sexual selection. We tested this hypothesis on a complex of parthenogenetic and bisexual lizards of the genus Darevskia. We evaluated area, counts, and chromatic properties (UV opponency, saturation) of UV–blue spots and compared the values between the clones and their bisexual progenitor species. We found a fair heterogeneity between the parthenogenetic species, but no general tendency toward higher crypsis or conspicuousness. Values of the parthenogens were not significantly different from the values of sexual females. A possible explanation is that the changes in selective forces associated with parthenogenetic reproduction are too small to affect the resulting pattern of selective pressures on the studied traits, or that the phenotypes of the parthenogens result from the unique combination of parental genomes and are conserved by clonal reproduction.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 531
Author(s):  
Grzegorz Suwala ◽  
Marie Altmanová ◽  
Sofia Mazzoleni ◽  
Emmanouela Karameta ◽  
Panayiotis Pafilis ◽  
...  

Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
François Druelle ◽  
Jana Goyens ◽  
Menelia Vasilopoulou-Kampitsi ◽  
Peter Aerts

AbstractWhile running, small animals frequently encounter large terrain variations relative to their body size, therefore, terrain variations impose important functional demands on small animals. Nonetheless, we have previously observed in lizards that running specialists can maintain a surprisingly good running performance on very uneven terrains. The relatively large terrain variations are offset by their capacity for leg adjustability that ensures a ‘smooth ride’ of the centre of mass (CoM). The question as to how the effect of an uneven terrain on running performance and locomotor costs differs between species exhibiting diverse body build and locomotor specializations remains. We hypothesise that specialized runners with long hind limbs can cross uneven terrain more efficiently than specialized climbers with a dorso-ventrally flattened body and equally short fore and hind limbs. This study reports 3D kinematics using high-speed videos (325 Hz) to investigate leg adjustability and CoM movements in two lacertid lizards (Acanthodactylus boskianus, running specialist; Podarcis muralis, climbing specialist). We investigated these parameters while the animals were running on a level surface and over a custom-made uneven terrain. We analysed the CoM dynamics, we evaluated the fluctuations of the positive and negative mechanical energy, and we estimated the overall cost of transport. Firstly, the results reveal that the climbers ran at lower speeds on flat level terrain but had the same cost of transport as the runners. Secondly, contrary to the running specialists, the speed was lower and the energy expenditure higher in the climbing specialists while running on uneven terrain. While leg movements adjust to the substrates’ variations and enhance the stability of the CoM in the running specialist, this is not the case in the climbing specialist. Although their legs are kept more extended, the amplitude of movement does not change, resulting in an increase of the movement of the CoM and a decrease in locomotor efficiency. These results are discussed in light of the respective (micro-)habitat of these species and suggest that energy economy can also be an important factor for small vertebrates.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michail Rovatsos ◽  
Jasna Vukić ◽  
Agata Mrugała ◽  
Grzegorz Suwala ◽  
Petros Lymberakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document