Predictors of taxonomic and functional composition of black spruce seedling ectomycorrhizal fungal communities along peatland drainage gradients

Mycorrhiza ◽  
2022 ◽  
Author(s):  
Stefan F. Hupperts ◽  
Erik A. Lilleskov
2010 ◽  
Vol 40 (7) ◽  
pp. 1288-1301 ◽  
Author(s):  
D. Lee Taylor ◽  
Ian C. Herriott ◽  
Kelsie E. Stone ◽  
Jack W. McFarland ◽  
Michael G. Booth ◽  
...  

This paper outlines molecular analyses of soil fungi within the Bonanza Creek Long Term Ecological Research program. We examined community structure in three studies in mixed upland, black spruce ( Picea mariana (Mill.) BSP), and white spruce ( Picea glauca (Moench) Voss) forests and examined taxa involved in cellulose degradation at one upland site. We found that soil horizon was the factor by which fungal communities were most strongly structured and that predictable turnover in upland fungal species occurred through succession. Communities from consecutive summers were not significantly different, indicating that interannual variation was small in relation to differences between forest types and soil horizons, yet the community at a seasonal study site underwent significant changes within a year. In each study, mycorrhizal fungi dominated the community. Fungi rather than bacteria appeared to dominate [13C]cellulose degradation, with strongest growth in taxa that were not dominant members of the untreated community, including members of the genus Sebacina . Overall, our results point to considerable interannual resilience juxtaposed with narrow niche partitioning and the capacity of individual taxa in these hyperdiverse communities to respond strongly to resource inputs and changes in other abiotic environmental parameters such as temperature. Our data double the cumulative total of fungal sequences in GenBank and together achieve a better picture of fungal communities here than for any other ecosystem on earth at this time.


1990 ◽  
Vol 80 (3) ◽  
pp. 365-370 ◽  
Author(s):  
Terence J. Blake ◽  
Weixing Tan ◽  
Suzanne R. Abrams

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


1981 ◽  
Author(s):  
David H. Alban ◽  
Richard F. Watt
Keyword(s):  

2017 ◽  
Vol 43 (2) ◽  
pp. 286 ◽  
Author(s):  
Dan-Mei CHEN ◽  
Ling YUAN ◽  
Jian-Guo HUANG ◽  
Jian-Hua JI ◽  
Hong-Qian HOU ◽  
...  

Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 172 ◽  
Author(s):  
Jelena Lazarević ◽  
Audrius Menkis

Pinus heldreichii is a high-altitude coniferous tree species naturaly occurring in small and disjuncted populations in the Balkans and southern Italy. The aim of this study was to assess diversity and composition of fungal communities in living needles of P. heldreichii specifically focusing on fungal pathogens. Sampling was carried out at six different sites in Montenegro, where 2-4 year-old living needles of P. heldreichii were collected. Following DNA isolation, it was amplified using ITS2 rDNA as a marker and subjected to high-throughput sequencing. Sequencing resulted in 31,831 high quality reads, which after assembly were found to represent 375 fungal taxa. The detected fungi were 295 (78.7%) Ascomycota, 79 (21.0%) Basidiomycota and 1 (0.2%) Mortierellomycotina. The most common fungi were Lophodermium pinastri (12.5% of all high-quality sequences), L. conigenum (10.9%), Sydowia polyspora (8.8%), Cyclaneusma niveum (5.5%), Unidentified sp. 2814_1 (5.4%) and Phaeosphaeria punctiformis (4.4%). The community composition varied among different sites, but in this respect two sites at higher altitudes (harsh growing conditions) were separated from three sites at lower altitudes (milder growing conditions), suggesting that environmental conditions were among major determinants of fungal communities associated with needles of P. heldreichii. Trees on one study site were attacked by bark beetles, leading to discolouration and frequent dieback of needles, thereby strongly affecting the fungal community structure. Among all functional groups of fungi, pathogens appeared to be an important component of fungal communities in the phyllosphere of P. heldreichii, especially in those trees under strong abiotic and biotic stress.


Sign in / Sign up

Export Citation Format

Share Document