The Chemical Interplay between Catecholamines and Metal Ions in Neurological Diseases

Author(s):  
Wolfgang Linert ◽  
Guy N. L. Jameson ◽  
Reginald F. Jameson ◽  
Kurt A. Jellinger
Metallomics ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 960-977 ◽  
Author(s):  
Stefanie Pfaender ◽  
Andreas M. Grabrucker

This review summarizes the findings on dysregulation of metal ions in neurological diseases and tries to develop and predict specific biometal profiles.


2011 ◽  
Vol 61 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Ana Budimir

Metal ions, Alzheimer's disease and chelation therapyIn the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases.


2019 ◽  
Vol 160 (36) ◽  
pp. 1407-1416
Author(s):  
Klára Szentmihályi

Abstract: The author briefly summarizes the relationship between oxidative stress and changes in metal ion metabolism in pathological processes. Essential metal ions such as Ca, Mg, Fe, Cu, Zn, Se are essential in the living organisms, their metabolism and intracellular concentration are strictly regulated. Externally or intrinsically, altered metal ion metabolism can lead to metal ion accumulation or metal ion deficiency. Excess amounts of redox-active essential metals such as Fe, Cu, Co, Cr, Ni can induce free radicals under certain circumstances that cause inflammation, cell damage, and cancerous changes, although the molecular mechanism is still unclear in every detail. Changes in the metabolism of non-essential and non-variable valence metal ions also affect redox homeostasis. Despite the fact that each metal can react in a unique way and with different mechanisms, similar processes occur, where both metal deficiency and excessive metal induce oxidative stress. Antioxidant defense system is damaged, free radicals produced alter the redox balance, and redox homeostasis changed induces the production of cytokines and other transcription factors that affect the intracellular signaling pathways and affect the development of various diseases, including metabolic, cardiovascular, neurological diseases and cancer. Orv Hetil. 2019; 160(36): 1407–1416.


Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Hiroki Kurata ◽  
Kazuhiro Nagai ◽  
Seiji Isoda ◽  
Takashi Kobayashi

Electron energy loss spectra of transition metal oxides, which show various fine structures in inner shell edges, have been extensively studied. These structures and their positions are related to the oxidation state of metal ions. In this sence an influence of anions coordinated with the metal ions is very interesting. In the present work, we have investigated the energy loss near-edge structures (ELNES) of some iron compounds, i.e. oxides, chlorides, fluorides and potassium cyanides. In these compounds, Fe ions (Fe2+ or Fe3+) are octahedrally surrounded by six ligand anions and this means that the local symmetry around each iron is almost isotropic.EELS spectra were obtained using a JEM-2000FX with a Gatan Model-666 PEELS. The energy resolution was about leV which was mainly due to the energy spread of LaB6 -filament. The threshole energies of each edges were measured using a voltage scan module which was calibrated by setting the Ni L3 peak in NiO to an energy value of 853 eV.


2005 ◽  
Vol 4 (3) ◽  
pp. 139-139
Author(s):  
L METZ ◽  
V YONG

Sign in / Sign up

Export Citation Format

Share Document