Transcriptional Profiling of Dendritic Cells in Response to Pathogens

2006 ◽  
pp. 461-486
Author(s):  
Maria Foti ◽  
Francesca Granucci ◽  
Mattia Pelizzola ◽  
Norman Pavelka ◽  
Ottavio Beretta ◽  
...  
2018 ◽  
Vol 63 (3) ◽  
pp. 1800759
Author(s):  
Maria Jose Rodriguez ◽  
Francisca Palomares ◽  
Gador Bogas ◽  
Maria Jose Torres ◽  
Araceli Diaz-Perales ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e52875 ◽  
Author(s):  
Kristina Lundberg ◽  
Ann-Sofie Albrekt ◽  
Inge Nelissen ◽  
Saskia Santegoets ◽  
Tanja D. de Gruijl ◽  
...  

Immunology ◽  
2006 ◽  
Vol 117 (2) ◽  
pp. 156-166 ◽  
Author(s):  
Kristina Larsson ◽  
Malin Lindstedt ◽  
Carl A. K. Borrebaeck

2010 ◽  
Vol 23 (4) ◽  
pp. 213-224 ◽  
Author(s):  
H. Ott ◽  
T. Wiederholt ◽  
M. Andresen Bergström ◽  
R. Heise ◽  
C. Skazik ◽  
...  

PLoS ONE ◽  
2008 ◽  
Vol 3 (1) ◽  
pp. e1403 ◽  
Author(s):  
Ludovic Tailleux ◽  
Simon J. Waddell ◽  
Mattia Pelizzola ◽  
Alessandra Mortellaro ◽  
Michael Withers ◽  
...  

2008 ◽  
Vol 84 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Saskia J. A. M. Santegoets ◽  
Susan Gibbs ◽  
Kim Kroeze ◽  
Rieneke van de Ven ◽  
Rik J. Scheper ◽  
...  

2017 ◽  
Vol 102 (4) ◽  
pp. 1055-1068 ◽  
Author(s):  
Nathalie van Leeuwen-Kerkhoff ◽  
Kristina Lundberg ◽  
Theresia M. Westers ◽  
Shahram Kordasti ◽  
Hetty J. Bontkes ◽  
...  

2003 ◽  
Vol 82 (2) ◽  
pp. 75-86 ◽  
Author(s):  
Xin-Sheng Ju ◽  
Christine Hacker ◽  
Jaime Madruga ◽  
Steffen M. Kurz ◽  
Siegne Knespel ◽  
...  

Genomics Data ◽  
2016 ◽  
Vol 7 ◽  
pp. 64-66 ◽  
Author(s):  
Federica Chessa ◽  
Thomas Hielscher ◽  
Daniel Mathow ◽  
Hermann-Josef Gröne ◽  
Zoran V. Popovic

2018 ◽  
Vol 2 (21) ◽  
pp. 2862-2878 ◽  
Author(s):  
Vanessa Sue Wacleche ◽  
Amélie Cattin ◽  
Jean-Philippe Goulet ◽  
Dominique Gauchat ◽  
Annie Gosselin ◽  
...  

Abstract Classical CD16− vs intermediate/nonclassical CD16+ monocytes differ in their homing potential and biological functions, but whether they differentiate into dendritic cells (DCs) with distinct contributions to immunity against bacterial/viral pathogens remains poorly investigated. Here, we employed a systems biology approach to identify clinically relevant differences between CD16+ and CD16− monocyte-derived DCs (MDDCs). Although both CD16+ and CD16− MDDCs acquire classical immature/mature DC markers in vitro, genome-wide transcriptional profiling revealed unique molecular signatures for CD16+ MDDCs, including adhesion molecules (ITGAE/CD103), transcription factors (TCF7L2/TCF4), and enzymes (ALDH1A2/RALDH2), whereas CD16− MDDCs exhibit a CDH1/E-cadherin+ phenotype. Of note, lipopolysaccharides (LPS) upregulated distinct transcripts in CD16+ (eg, CCL8, SIGLEC1, MIR4439, SCIN, interleukin [IL]-7R, PLTP, tumor necrosis factor [TNF]) and CD16− MDDCs (eg, MMP10, MMP1, TGM2, IL-1A, TNFRSF11A, lysosomal-associated membrane protein 1, MMP8). Also, unique sets of HIV-modulated genes were identified in the 2 subsets. Further gene set enrichment analysis identified canonical pathways that pointed to “inflammation” as the major feature of CD16+ MDDCs at immature stage and on LPS/HIV exposure. Finally, functional validations and meta-analysis comparing the transcriptome of monocyte and MDDC subsets revealed that CD16+ vs CD16− monocytes preserved their superior ability to produce TNF-α and CCL22, as well as other sets of transcripts (eg, TCF4), during differentiation into DC. These results provide evidence that monocyte subsets are transcriptionally imprinted/programmed with specific differentiation fates, with intermediate/nonclassical CD16+ monocytes being precursors for pro-inflammatory CD103+RALDH2+TCF4+ DCs that may play key roles in mucosal immunity homeostasis/pathogenesis. Thus, alterations in the CD16+/CD16− monocyte ratios during pathological conditions may dramatically influence the quality of MDDC-mediated immunity.


Sign in / Sign up

Export Citation Format

Share Document