scholarly journals The Impact of Climate Change and Variability on Heavy Precipitation, Floods, and Droughts

Author(s):  
Kevin E Trenberth
Author(s):  
Mohamed Alboghdady ◽  
Salah E. El-Hendawy

Purpose The purpose of this study is to analyze the impact of climate change and variability on agricultural production in Middle East and North Africa region (MENA) where the deleterious impacts of climate change are generally projected to be greatest. Design/methodology/approach The study used a production function model using Fixed Effect Regression (FER) analysis and then using marginal impact analysis to assess the impact of climate change and variability on agricultural production. Therefore, the study utilized panel data for the period 1961-2009 pooled from 20 countries in MENA region. Findings Results showed that 1 per cent increase in temperature during winter resulted in 1.12 per cent decrease in agricultural production. It was also observed that 1 per cent increase in temperature variability during winter and spring resulted in 0.09 and 0.14 per cent decrease in agricultural production, respectively. Results also indicated that increasing precipitation during winter and fall season and precipitation variability during winter and summer seasons had negative impact. The estimated parameters of square temperature and precipitation indicated that climate change has significant nonlinear impacts on agricultural production in MENA region. Originality/value Despite there are many studies on the impact of climate change on agricultural production, there is a lack of publications to address the economic impact of both climate change and variability on agricultural production in MENA region. Thus, these results are more comprehensive and more informative to policymakers than the results from field trials.


2019 ◽  
Vol 156 (4) ◽  
pp. 609-630 ◽  
Author(s):  
Yen Pham ◽  
Kathryn Reardon-Smith ◽  
Shahbaz Mushtaq ◽  
Geoff Cockfield

2005 ◽  
Vol 51 (5) ◽  
pp. 53-59 ◽  
Author(s):  
H.A.J. Senhorst ◽  
J.J.G. Zwolsman

A number of possible relationships between climate change and water quality of Dutch surface waters have been investigated and an indicative quantification of the impact of climate change on water quality has been established. The analysis focused on water quality during periods of low flow and extreme heat, which are assumed to increase in frequency and intensity due to climate change. The results indicate that the impact of climate change on water quality cannot be generalised and should be assessed on a case by case basis. However, the impact on extreme situations (floods and droughts) seems to be largest, whilst water quality under average discharge conditions appears to be relatively unchanged.


2020 ◽  
Author(s):  
Achenafi Teklay ◽  
Yihun T. Dile ◽  
Dereje H. Asfaw ◽  
Haimanote K Bayabil ◽  
Kibruyesfa Sisay

Abstract BackgroundHydrologic systems have been changing due to the impact of climate change and climate variability. The impacts of climate change are set to increase in the future due to the rise of global warming. Quantifying the impact of climate change on the spatial and temporal hydrological processes is important for integrated water resource management. The Lake Tana basin, which is the source of the Upper Blue Nile, is vulnerable to climate change and variability. This study was carried out in the four major tributary watersheds of the Lake Tana basin: Gilgel Abay, Gumara, Ribb, and Megech. The climate model and hydrological model was used to (i) to evaluate the performance of the Soil and Water Assessment Tool for study watershed, (ii) to assess the future rainfall and temperature variability and change in the study watershed, and (iii) to examine the impact of climate change on future watershed hydrology. The study used dynamically downscaled climate data for the baseline (2010–2015) and future period (2046–2051) under two Representative Concentration Pathways (RCP4.5 and RCP8.5). The climate scenarios were simulated using the Weather Research and Forecasting (WRF) model, with a 4-km horizontal resolution. A linear scaling method was applied to minimize model biases. The SWAT model was used to estimate the baseline and future hydrology using the bias-corrected climate data. ResultsThe performance of the SWAT model was ‘good’ to ‘very good’ for both the calibration and validation periods, with the Nash–Sutcliffe efficiency values between 0.71 to 0.92. The projected changes in rainfall vary with seasons and watershed under both scenarios. On average, annual rainfall may increase by 9.8% and 21.2% under RCP4.5 and RCP8.5 scenarios, respectively. Minimum temperature may rise by 1.68 °C and 2.26 °C while maximum temperature may increase by 1.65 °C and 2.75 °C under RCP4.5 and RCP8.5 scenarios, respectively. The changes in climate may cause an increase in surface runoff by 20.9% and 46.5% under RCP4.5 and RCP8.5 scenarios, respectively, while the evapotranspiration increase by 4.7% and 12.2% under RCP4.5 and RCP8.5, respectively. ConclusionThe findings provide valuable insights to implement appropriate water management strategies to mitigate and adapt to the negative impacts of climate change and variability on the Lake Tana basin, and other regions which have similar agro-ecology.


2015 ◽  
Vol 24 (2) ◽  
pp. 173-188 ◽  
Author(s):  
Hagen Koch ◽  
Stefan Vögele ◽  
Fred F. Hattermann ◽  
Shaochun Huang

Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Sign in / Sign up

Export Citation Format

Share Document