scholarly journals Structure and interactions within the pelagic microbial food web (from viruses to microplankton) across environmental gradients in the Mediterranean Sea

2013 ◽  
Vol 27 (4) ◽  
pp. 1034-1045 ◽  
Author(s):  
E. Di Poi ◽  
C. Blason ◽  
C. Corinaldesi ◽  
R. Danovaro ◽  
E. Malisana ◽  
...  
2011 ◽  
Vol 8 (1) ◽  
pp. 185-220 ◽  
Author(s):  
U. Christaki ◽  
F. Van Wambeke ◽  
D. Lefevre ◽  
A. Lagaria ◽  
L. Prieur ◽  
...  

Abstract. The abundance and activity of the major members of the heterotrophic microbial community – from viruses to ciliates – were studied along a longitudinal transect across the Mediterranean Sea in the summer of 2008. The Mediterranean Sea is characterized by a west to the east gradient of deepening of DCM (deep chlorophyll maximum) and increasing oligotrophy reflected in gradients of heterotrophic microbial biomass and production. However, within this longitudinal trend, hydrological mesoscale features exist and likely influence microbial dynamics. We show here the importance of mesoscale structures by a description of the structure and function of the microbial food web through an investigation of 3 geographically distant eddies within a longitudinal transect. Three selected sites each located in the center of an anticyclonic eddy were intensively investigated: in the Algero-Provencal Basin (St. A), the Ionian Basin (St. B), and the Levantine Basin (St. C). The 3 geographically distant eddies showed the lowest values of the different heterotrophic compartments of the microbial food web, and except for viruses in site C, all stocks were higher in the neighboring stations outside the eddies. During our study the 3 eddies showed equilibrium between GCP (Gross Community Production) and DCR (Dark Community Respiration); moreover, the west-east (W-E) gradient was evident in terms of heterotrophic biomass but not in terms of production. Means of integrated PPp values were higher at site B (~190 mg C m−2 d−1) and about 15% lower at sites A and C (~160 mg C m−2 d−1). Net community production fluxes were similar at all three stations exhibiting equilibrium between gross community production and dark community respiration.


Author(s):  
Luca Zoccarato ◽  
Anna Malusà ◽  
Serena Fonda Umani

<p>In this study, we carried out dilution experiments at the surface and in the mesopelagic and bathypelagic layers at 15 sites in the Mediterranean Sea that covered a wide range of trophic conditions. The main aim was to test the hypothesis that prokaryotes, and particularly heterotrophic prokaryotes, are pivotal in sustaining both nanoplankton and microzooplankton energy requirements at all of the considered trophic states. These data highlight that bacterivory is the major pathway of organic carbon transfer in the oligotrophic and meso-eutrophic environments. The microzooplankton mostly feed on prokaryotes, directly or indirectly (through nanoplankton exploitation), rather than on microalgae. Under eutrophic conditions, herbivory is the main trophic pathway; however, the heterotrophic prokaryotes always represent an important source of carbon. The lowest food-web efficiency <em>(i.e</em>., ratio between productivity of the highest trophic level and productivity of the lower trophic levels) was determined for the eutrophic status due to possible grazer satiation, which translates into an excess of autotrophic biomass available for export or transfer to higher trophic levels. The food-web efficiency is higher under mesoeutrophic and oligotrophic conditions, where the main pathway is bacterivory. In the mesopelagic and bathypelagic layers, only nanoplankton predation on heterotrophic prokaryotes was investigated. The food-web efficiency in these layers was relatively high and nanoplankton appear to efficiently exploit the available biomass of heterotrophic prokaryotes.</p>


2009 ◽  
Vol 6 (6) ◽  
pp. 11187-11292 ◽  
Author(s):  
I. Siokou-Frangou ◽  
U. Christaki ◽  
M. G. Mazzocchi ◽  
M. Montresor ◽  
M. Ribera d'Alcalá ◽  
...  

Abstract. We present an overview of the plankton studies conducted during the last 25 years in the epipelagic offshore waters of the Mediterranean Sea. This quasi-enclosed sea is characterized by a rich and complex physical dynamics that includes unique thermohaline features, particular multilayer circulation, topographic gyres, and meso- and sub-mesoscale activity. Recent investigations have basically confirmed the long-recognised oligotrophic character of this sea, which enhances along both the west-east, and the north-south directions. Nutrient availability is low, especially for phosphorous (N:P up to 60), although limitation may be relaxed by inputs from highly populated coasts and from the atmosphere. Phytoplankton biomass as chl-a, generally displays low values (less than 0.2 μg chl-a l-1) over large areas, with a modest late winter increase. A large bloom (up to 3 μg l-1) throughout the late winter and early spring is only observed in the NW area. Relatively high biomass peaks are also recorded in fronts and cyclonic gyres. A deep chlorophyll maximum is a~permanent feature for the whole basin (except during the late winter mixing). It progressively deepens from the Alboran Sea (30 m) to the easternmost Levantine basin (120 m). Primary production reveals a similar west-east decreasing trend and ranges from 59 to 150 g C m-2 y-1 (in situ measurements). Overall the basin is largely dominated by small-sized autotrophs, microheterotrophs and egg-carrying copepod species. The phytoplankton, the microbial (both autotrophic and heterotrophic) and the zooplankton components reveal a considerable diversity and variability over spatial and temporal scales, the latter less explored though. Examples are the wide diversity of dinoflagellates and coccolithophores, the multifarious role of diatoms or picoeukaryotes, and the distinct seasonal or spatial patterns of the species-reach copepod genera or families which dominate in the basin. Major dissimilarities between western and eastern basins have been highlighted in species composition of phytoplankton and mesozooplankton, but also in the microbial components and in their relationships. Superimposed to these longitudinal differences, a pronounced biological heterogeneity is also observed in areas hosting deep convection, fronts, cyclonic and anti-cyclonic gyres or eddies. There, the intermittent nutrient enrichment promotes switches from a small-sized microbial community to diatom-dominated populations. A classical food web is ready to substitute the microbial food web in these cases. These switches, likely occurring within a continuum of trophic pathways, may greatly enhance the flux towards high trophic levels, in spite of an apparent heterotrophy. Basically, the system seems to be top-down controlled and characterised by a ‘multivorous web’, as shown by the great variety of feeding modes and preferences and by the significant and simultaneous grazing impact on phytoplankton and ciliates by mesozooplankton. ‘La Mediterrània, o almenys la seva zona pelàgica, seria comparable a una Amazònia marina.’ (Margalef, 1995) (The Mediterranean, or at least its pelagic zone, would be like a marine version of the Amazon forest.)


2017 ◽  
Vol 81 (3) ◽  
pp. 327 ◽  
Author(s):  
Ana Ventero ◽  
Magdalena Iglesias ◽  
Begoña Villamor

Anchovy is a commercial species that supports large fisheries in the Mediterranean Sea. In addition, anchovy is an essential element of the pelagic food web, playing a considerable role in connecting the lower and upper trophic levels. Comparisons made regarding length frequency distribution, demographic structure, growth during the first year inferred from otoliths, and the condition factor of anchovy inhabiting the Spanish Mediterranean Sea (General Fisheries Commission for the Mediterranean management units, GSA06-Ebro Delta and 01-Alboran Sea), based on five-year data, clearly showed significant growth differences between areas and evidenced the existence of two independent anchovy stocks in the Spanish Mediterranean Sea. The anchovies inhabiting the Alboran Sea had higher growth than the anchovies inhabiting the Ebro Delta for the same age (one year old). The dramatic decline of the Alboran Sea anchovy could be related to the current management legislation in the Spanish Mediterranean Sea, based mainly on a common minimum catch size (9 cm), which should be revised given that sustainable anchovy exploitation is crucial for the pelagic food web equilibrium.


2014 ◽  
Vol 11 (19) ◽  
pp. 5607-5619 ◽  
Author(s):  
E. Pulido-Villena ◽  
A.-C. Baudoux ◽  
I. Obernosterer ◽  
M. Landa ◽  
J. Caparros ◽  
...  

Abstract. The significant impact of dust deposition on heterotrophic bacterial dynamics in the surface oligotrophic ocean has recently been evidenced. Considering the central role of bacteria in the microbial loop, it is likely that dust deposition also affects the structure and the functioning of the whole microbial food web. In the frame of the DUNE project, aiming to estimate the impact of dust deposition on the oligotrophic Mediterranean Sea through mesocosm experiments, the main goal of the present paper was to assess how two successive dust deposition events affect the dynamics of the microbial food web. The first dust seeding delivered new P and N to the amended mesocosms and resulted in a pronounced stimulation of bacterial respiration. It also induced pronounced, but transient, changes in the bacterial community composition. No significant effects were observed on the abundances of viruses and heterotrophic nanoflagellates. The second dust seeding also delivered new P and N to the amended mesocosms, but the effect on the microbial food web was very different. Bacterial respiration remained constant and bacterial abundance decreased. Compositional changes following the second seeding were minor compared to the first one. The decrease in bacterial abundance coincided with an increase in virus abundance, resulting in higher virus:bacteria ratios throughout the second seeding period. Our study shows that dust deposition to the surface oligotrophic ocean may involve important modifications of the trophic links among the components of the microbial food web with presumed consequences on C and nutrient cycling.


Sign in / Sign up

Export Citation Format

Share Document