scholarly journals Arctic Ocean basin liquid freshwater storage trend 1992-2012

2014 ◽  
Vol 41 (3) ◽  
pp. 961-968 ◽  
Author(s):  
B. Rabe ◽  
M. Karcher ◽  
F. Kauker ◽  
U. Schauer ◽  
J. M. Toole ◽  
...  
Keyword(s):  
1993 ◽  
Vol 67 (S35) ◽  
pp. 1-35 ◽  
Author(s):  
Louie Marincovich

The marine molluscan fauna of the Prince Creek Formation near Ocean Point, northern Alaska, is of Danian age. It is the only diverse and abundant Danian molluscan fauna known from the Arctic Ocean realm, and is the first evidence for an indigenous Paleocene shallow-water biota within a discrete Arctic Ocean Basin faunal province.A high percentage of endemic species, and two endemic genera, emphasize the degree to which the Arctic Ocean was geographically isolated from the world ocean during the earliest Tertiary. Many of the well-preserved Ocean Point mollusks, however, also occur in Danian faunas of the North American Western Interior, the Canadian Arctic Islands, Svalbard, and northwestern Europe, and are the basis for relating this Arctic Ocean fauna to that of the Danian world ocean.The Arctic Ocean was a Danian refugium for some genera that became extinct elsewhere during the Jurassic and Cretaceous. At the same time, this nearly landlocked ocean fostered the evolution of new taxa that later in the Paleogene migrated into the world ocean by way of the northeastern Atlantic. The first Cenozoic occurrences are reported for the bivalves Integricardium (Integricardium), Oxytoma (Hypoxytoma), Placunopsis, Tancredia (Tancredia), and Tellinimera, and the oldest Cenozoic records given for the bivalves Gari (Garum), Neilo, and Yoldia (Cnesterium). Among the 25 species in the molluscan fauna are four new gastropod species, Amauropsis fetteri, Ellipsoscapha sohli, Mathilda (Fimbriatella) amundseni, and Polinices (Euspira) repenningi, two new bivalve genera, Arcticlam and Mytilon, and 15 new bivalve species, Arcticlam nanseni, Corbula (Caryocorbula) betsyae, Crenella kannoi, Cyrtodaria katieae, Gari (Garum) brouwersae, Integricardium (Integricardium) keenae, Mytilon theresae, Neilo gryci, Nucula (Nucula) micheleae, Nuculana (Jupiteria) moriyai, Oxytoma (Hypoxytoma) hargrovei, Placunopsis rothi, Tancredia (Tancredia) slavichi, Tellinimera kauffmani, and Yoldia (Cnesterium) gladenkovi.


1977 ◽  
Vol 37 (1-3) ◽  
pp. 1-24 ◽  
Author(s):  
Ned A Ostenso ◽  
Richard J Wold

1982 ◽  
Vol 31 ◽  
pp. 49-55
Author(s):  
O. Larsen

The Kap Washington Group of peralkaline volcanics is exposed along the coast of North Greenland at 40°W. This coastal region is intruded by numerous NNE-NW-trending dolerite dykes of alkaline affinity. The volcanics and their basic intrusive counterparts appear to be related to the initial rifting in the Arctic Ocean basin. The timing of this rifting may be supported by accurate dating of the associated volcanic activity. An improved Rb/Sr age of 64±3 million years (i.e. approximately at the Cretaceous-Tertiary boundary) has been determined on rhyolitic lavas collected at Kap Kane, probably near the top of the volcanic sequence. The extrusive volcanic activity probably started already in late Cretaceous time, as in­dicated by fossil plant remains, found in sediments interbedded with the lavas on Lockwood 0.


2020 ◽  
Author(s):  
Anne-Marie Wefing ◽  
Núria Casacuberta ◽  
Marcus Christl ◽  
Nicolas Gruber ◽  
John N. Smith

Abstract. The inflow of Atlantic Waters to the Arctic Ocean is a crucial determinant for the future trajectory of this ocean basin with regard to warming, loss of sea-ice and ocean acidification. Yet many details of the fate and circulation of these waters within the Arctic remain unclear. Here, we use the two long-lived artificial radionuclides 129I and 236U together with two tracer age models to constrain the pathways and circulation times of Atlantic waters in the surface and in the mid-depth Atlantic layer (250–800 m depth). We thereby benefit from the unique time-dependent tagging of Atlantic waters by these two isotopes. In the surface layer, a binary mixing model yields tracer ages of Atlantic Waters between 9–16 years in the Amundsen Basin, 12–17 years in the Fram Strait (East Greenland Current) and up to 20 years in the Canada Basin, reflecting the pathways of Atlantic Waters through the Arctic and their exiting through Fram Strait. In the mid-depth Atlantic layer (250 to 800 m), the transit time distribution (TTD) model yields mean ages in the central Arctic ranging between 15 and 65 years, while the mode ages representing the most probable ages of the TTD range between 2 and 30 years. The estimated mean ages are overall in good agreement with previous studies using artificial radionuclides or ventilation tracers. Although we find the overall flow to be dominated by advection, the shift of the mode age towards a younger age compared to the mean age reflects also the presence of a substantial amount of lateral mixing. For applications interested in how fast signals are transported into the Arctic's interior, the mode age appears to be a suitable measure. The short mode ages obtained in this study suggest that changes in the properties of Atlantic Waters will quickly spread through the Arctic Ocean and can lead to relatively rapid changes throughout the upper water column in future years.


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 111-129
Author(s):  
Anne-Marie Wefing ◽  
Núria Casacuberta ◽  
Marcus Christl ◽  
Nicolas Gruber ◽  
John N. Smith

Abstract. The inflow of Atlantic Water to the Arctic Ocean is a crucial determinant for the future trajectory of this ocean basin with regard to warming, loss of sea ice, and ocean acidification. Yet many details of the fate and circulation of these waters within the Arctic remain unclear. Here, we use the two long-lived anthropogenic radionuclides 129I and 236U together with two age models to constrain the pathways and circulation times of Atlantic Water in the surface (10–35 m depth) and in the mid-depth Atlantic layer (250–800 m depth). We thereby benefit from the unique time-dependent tagging of Atlantic Water by these two isotopes. In the surface layer, a binary mixing model yields tracer ages of Atlantic Water between 9–16 years in the Amundsen Basin, 12–17 years in the Fram Strait (East Greenland Current), and up to 20 years in the Canada Basin, reflecting the pathways of Atlantic Water through the Arctic and their exiting through the Fram Strait. In the mid-depth Atlantic layer (250–800 m), the transit time distribution (TTD) model yields mean ages in the central Arctic ranging between 15 and 55 years, while the mode ages representing the most probable ages of the TTD range between 3 and 30 years. The estimated mean ages are overall in good agreement with previous studies using artificial radionuclides or ventilation tracers. Although we find the overall flow to be dominated by advection, the shift in the mode age towards a younger age compared to the mean age also reflects the presence of a substantial amount of lateral mixing. For applications interested in how fast signals are transported into the Arctic's interior, the mode age appears to be a suitable measure. The short mode ages obtained in this study suggest that changes in the properties of Atlantic Water will quickly spread through the Arctic Ocean and can lead to relatively rapid changes throughout the upper water column in future years.


Sign in / Sign up

Export Citation Format

Share Document