scholarly journals A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions

2014 ◽  
Vol 119 (21) ◽  
pp. 11,932-11,954 ◽  
Author(s):  
Christoph Welker ◽  
Olivia Martius ◽  
Paul Froidevaux ◽  
Carleen H. Reijmer ◽  
Hubertus Fischer
2010 ◽  
Vol 115 (D14) ◽  
Author(s):  
E. Schlosser ◽  
K. W. Manning ◽  
J. G. Powers ◽  
M. G. Duda ◽  
G. Birnbaum ◽  
...  

2012 ◽  
Vol 61 (2) ◽  
pp. 205-219 ◽  
Author(s):  
Agnieszka Stokłosa ◽  
Tomasz Hura ◽  
Ewa Stupnicka-Rodzynkiewicz ◽  
Teresa Dąbkowska ◽  
Andrzej Lepiarczyk

In growing maize, an increase in the content of phenolic compounds and selected phenolic acids in soil was found after the incorporation of white mustard, buckwheat, spring barley, oats and rye mulches into the soil. The highest content of phenolic compounds in soil was found after oats mulch incorporation (20% more than in the control soil). The highest content of selected phenolic acids was found for the soil with the oats and rye mulch. Among the phenolic acids investigated, ferulic acid was most commonly found in the soil with the plant mulches. However, two phenolic acids: the protocatechuic and chlorogenic acid, were not detected in any soil samples (neither in the control soil nor in the mulched soil). At the same time, a decrease in the primary weed infestation level in maize was found in the plots with all the applied plant mulches, especially on the plots with oats, barley and mustard. The plant mulches were more inhibitory against monocotyledonous weeds than dicotyledonous ones. During high precipitation events and wet weather, a rapid decrease in the content of phenolic compounds in soil and an increase in the primary weed infestation level in maize were observed.


2006 ◽  
Vol 18 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Gerit Birnbaum ◽  
Ralf Brauner ◽  
Hinnerk Ries

Kohnen Station (75°S, 0°E, 2892 m) is one of the two drilling sites of the European Project for Ice Coring in Antarctica. Snow falls at Kohnen only a few times a year with comparatively high precipitation rates of 1 mm to over 5 mm water equivalent per event. These events contribute considerably to the total annual accumulation of which the long-term mean value is 62 mm water equivalent per year. For ice core interpretation, it is important to understand synoptic processes leading to such high precipitation rates. Our investigation is based on visually observed periods of heavy snowfall at Kohnen during summer campaigns since 2001/2002. The corresponding synoptic situations can be grouped into three categories. Category I is where occluding fronts of eastward-moving low pressure systems reach the plateau, a fairly frequent occurrence. Category II is where lows or secondary lows formed east of the Greenwich Meridian move to the west (retrograde movement), and frontal clouds influence the plateau. In Category III, large-scale lifting processes (due to an upper air low west of Kohnen Station) lead to cloud formation over the plateau of Dronning Maud Land.


Boreas ◽  
2015 ◽  
Vol 44 (4) ◽  
pp. 676-692 ◽  
Author(s):  
Annika Berntsson ◽  
Krister N. Jansson ◽  
Malin E. Kylander ◽  
Francois De Vleeschouwer ◽  
Sebastien Bertrand

2020 ◽  
Author(s):  
Goutam Choudhury ◽  
Bhishma Tyagi ◽  
Naresh Krishna Vissa ◽  
Jyotsna Singh ◽  
Chandan Sarangi ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 473
Author(s):  
Yihui Liu ◽  
Fei Li ◽  
Weifeng Hao

The performance of recent reanalysis products (i.e., ERA-Interim, NCEP2, MERRA, CFSR, and JRA-55) was evaluated based on in situ observations from nine automatic weather stations and one stake network to investigate the monthly and seasonal variability of the surface mass balance in Antarctica. Synoptic precipitation simulations were also evaluated by an investigation of high precipitation events. The seasonal variations showed large fluctuations and were inconsistent at each station, probably owing to the large interannual variability of snow accumulation based on the short temporal coverage of the data. The ERA-Interim and JRA-55 datasets revealed better simulated precision, with the other three models presenting similar simulations at monthly and seasonal timescales. The JRA-55 dataset captured a greater number of synoptic high precipitation events at four of the nine stations. Such events at the other five stations were mainly captured by ERA and CFSR. The NCEP2 dataset was more weakly correlated with each station on all timescales. These results indicate that significant monthly or seasonal correlations between in situ observations and the models had little effect on the capability of the reanalyses to capture high precipitation events. The precision of the five reanalysis datasets widely fluctuated in specific regions or at specific stations at different timescales. Great caution is needed when using a single reanalysis dataset to assess the surface mass balance over all of Antarctica.


2014 ◽  
Vol 27 (15) ◽  
pp. 5941-5963 ◽  
Author(s):  
Xiang Gao ◽  
C. Adam Schlosser ◽  
Pingping Xie ◽  
Erwan Monier ◽  
Dara Entekhabi

Abstract An analogue method is presented to detect the occurrence of heavy precipitation events without relying on modeled precipitation. The approach is based on using composites to identify distinct large-scale atmospheric conditions associated with widespread heavy precipitation events across local scales. These composites, exemplified in the south-central, midwestern, and western United States, are derived through the analysis of 27-yr (1979–2005) Climate Prediction Center (CPC) gridded station data and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). Circulation features and moisture plumes associated with heavy precipitation events are examined. The analogues are evaluated against the relevant daily meteorological fields from the MERRA reanalysis and achieve a success rate of around 80% in detecting observed heavy events within one or two days. The method also captures the observed interannual variations of seasonal heavy events with higher correlation and smaller RMSE than MERRA precipitation. When applied to the same 27-yr twentieth-century climate model simulations from Phase 5 of the Coupled Model Intercomparison Project (CMIP5), the analogue method produces a more consistent and less uncertain number of seasonal heavy precipitation events with observation as opposed to using model-simulated precipitation. The analogue method also performs better than model-based precipitation in characterizing the statistics (minimum, lower and upper quartile, median, and maximum) of year-to-year seasonal heavy precipitation days. These results indicate the capability of CMIP5 models to realistically simulate large-scale atmospheric conditions associated with widespread local-scale heavy precipitation events with a credible frequency. Overall, the presented analyses highlight the improved diagnoses of the analogue method against an evaluation that considers modeled precipitation alone to assess heavy precipitation frequency.


Sign in / Sign up

Export Citation Format

Share Document