Synoptic situations causing high precipitation rates on the Antarctic plateau: observations from Kohnen Station, Dronning Maud Land

2006 ◽  
Vol 18 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Gerit Birnbaum ◽  
Ralf Brauner ◽  
Hinnerk Ries

Kohnen Station (75°S, 0°E, 2892 m) is one of the two drilling sites of the European Project for Ice Coring in Antarctica. Snow falls at Kohnen only a few times a year with comparatively high precipitation rates of 1 mm to over 5 mm water equivalent per event. These events contribute considerably to the total annual accumulation of which the long-term mean value is 62 mm water equivalent per year. For ice core interpretation, it is important to understand synoptic processes leading to such high precipitation rates. Our investigation is based on visually observed periods of heavy snowfall at Kohnen during summer campaigns since 2001/2002. The corresponding synoptic situations can be grouped into three categories. Category I is where occluding fronts of eastward-moving low pressure systems reach the plateau, a fairly frequent occurrence. Category II is where lows or secondary lows formed east of the Greenwich Meridian move to the west (retrograde movement), and frontal clouds influence the plateau. In Category III, large-scale lifting processes (due to an upper air low west of Kohnen Station) lead to cloud formation over the plateau of Dronning Maud Land.

Author(s):  
Christine Wesche ◽  
Rolf Weller ◽  
Gert König-Langlo ◽  
Tanja Fromm ◽  
Alfons Eckstaller ◽  
...  

The Alfred Wegener Institute operates two stations in Dronning Maud Land, Antarctica. The German overwintering station Neumayer III is located on the Ekström Ice Shelf at 70°40’S and 08°16’W and is the logistics base for three long-term observatories (meteorology, air chemistry and geophysics) and nearby research activities. Due to the vicinity to the coast (ca. 20 km from the ice shelf edge), the Neumayer III Station is the junction for many German Antarctic expeditions, especially as the starting point for the supply traverse for the second German station Kohnen.The summer station Kohnen is located about 600 km from the coast and 750 km from Neumayer III Station on the Antarctic plateau at 75°S and 00°04’E. It was erected as the base for the deep-drilling ice core project, which took place between 2001 and 2006. Since then Kohnen Station is used as a logistics base for different research projects.


2001 ◽  
Vol 13 (3) ◽  
pp. 302-311 ◽  
Author(s):  
Jens-Ove Näslund

Large-scale bedrock morphology and relief of two key areas, the Jutulsessen Nunatak and the Jutulstraumen ice stream are used to discuss glascial history and landscape development in western and central Dronning Maud Land, Antarctica. Two main landform components were identified: well-defined summit plateau surfaces and a typical alpine glacial landscape. The flat, high-elevation plateau surfaces previously were part of one or several continuous regional planation surfaces. In western Dronning Maud Land, overlying cover rocks of late Palaeozoic age show that the planation surface(s) existed in the early Permian, prior to the break-up of Gondwana. A well-develoment escarpment, a mega landform typical for passive continental margins, bounds the palaeosurface remnants to the north for a distance of at least 700 km. The Cenozoic glacial landscape, incised in the palaeosurface and escarpment, is exemplified by Jutulsessen Nunatak, where a c. 1.2 km deep glacial valley system is developed. However, the prominent Penck-Jutul Trough represents some of the deepest dissection of the palaeosurface. This originally tectonic feature is today occupied by the Jutulstraumen ice stream. New topographic data show that the bed of the Penck-Jutul Trough is situated 1.9±1.1 km below sea level, and that the total landscape relief is at least 4.2 km. Today's relief is a result of several processes, including tectonic faulting, subaerial weathering, fluvial erosion, and glacial erosion. It is probable that erosion by ice streams has deepened the tectonic troughs of Dronning Maud Land since the onset of ice sheet glaciation in the Oligocene, and continues today. An attempt is made to identify major events in the long-term landscape development of Dronning Maud Land, since the break-up of the Gondwana continent.


1998 ◽  
Vol 27 ◽  
pp. 201-206 ◽  
Author(s):  
R. Calov ◽  
A. Savvin ◽  
R. Greve ◽  
I. Hansen ◽  
K. Hutter

The three-dimensional polythermal ice-sheet model SICOPOLIS is applied to the entire Antarctic ice sheet in support of the European Project for Ice Coring in Antartica (EPICA). in this study, we focus on the deep ice core to be drilled in Dronning Maud Land (Atlantic sector of East Antarctica) as part of EPICA. It has not yel been decided where the exact drill-site will be situated. Our objective is to support EPICA during its planning phase as well as during the actual drilling process. We discuss a transient simulation with a climate forcing derived from the Vostok ice core and the SPECMAP sea-level record. This simulation shows the range of accumulation, basal temperature, age and shear deformation to be expected in the region of Dronning Maud Land. Based on these results, a possible coring position is proposed, and the distribution of temperature, age, horizontal velocity and shear deformation is shown for this column.


2017 ◽  
Author(s):  
Jeremy Fyke ◽  
Jan Lenaerts ◽  
Hailong Wang

Abstract. Snowfall over Antarctica, the dominant term of the Antarctic surface mass balance, displays large regional heterogeneity in temporal variability patterns. This heterogeneity has the potential to dampen variability in integrated Antarctic surface mass trends by counteracting increases in snowfall in one location with decreases in another (and vice versa). To examine the presence of countervailing regional snowfall patterns, here we present an analysis of spatial patterns of regional Antarctic snowfall variability, their broader climate drivers and their impact on integrated Antarctic snowfall variability simulated as part of a preindustrial 1800 year equilibrated Earth System Model simulation. Correlation and composite analyses based on this output allow for a statistically robust exploration of Antarctic snowfall variability. We uncover statistically significant countervailing snowfall patterns across Antarctica that are corraborated by regional modelling and ice core records. These countervailing patterns are driven by variability in large-scale atmospheric moisture transport and cause large spatial heterogeneity in temporal variability, with a dampening effect on overall Antarctic snowfall variability magnitude. This dampening has implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of AIS mass loss accelerations.


2017 ◽  
Author(s):  
Barbara Stenni ◽  
Mark A. J. Curran ◽  
Nerilie J. Abram ◽  
Anais Orsi ◽  
Sentia Goursaud ◽  
...  

Abstract. Climate trends in the Antarctic region remain poorly characterised, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica 2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O) composites and temperature reconstructions since 0 CE, binned at 5 and 10-year resolution, for 7 climatically-distinct regions covering the Antarctic continent. Following earlier work of the Antarctica 2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica, and the whole continent. We use three methods for our temperature reconstructions: i) a temperature scaling based on the δ18O-temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data; ii) a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and iii) a composite-plus-scaling approach used in a previous continental scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0–1900 CE we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the Antarctic Peninsula regions, and these trends are robust across the distribution of records that contribute to the unweighted isotopic composites and also significant in the weighted temperature reconstructions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of natural variability over the last 2000-years. However, projected warming of the Antarctic continent during the 21st Century may soon see significant and unusual warming develop across other parts of the Antarctic continent. The extended Antarctica 2k ice core isotope database developed by this working group opens up many avenues for developing a deeper understanding of the response of Antarctic climate to natural and anthropogenic climate forcings. The first long-term quantification of regional climate in Antarctica presented herein is a basis for data-model comparison and assessments of past, present and future driving factors of Antarctic climate.


2021 ◽  
Author(s):  
Juliana Jaen ◽  
Toralf Renkwitz ◽  
Jorge L. Chau ◽  
Maosheng He ◽  
Peter Hoffmann ◽  
...  

Abstract. Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (~54 °N) and northern Norway (~69 °N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower thermosphere summer length (MLT-SL) using SMR and PRR winds, and (2) the mesosphere summer length (M-SL) using PRR and MLS. Under both definitions, the summer begins around April and ends around mid-September. The largest year to year variability is found in the summer beginning in both definitions, particularly at high-latitudes, possibly due to the influence of the polar vortex. At high-latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL, as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity, as well as large-scale atmospheric influences (e.g. quasi-biennial oscillations (QBO), El Niño-southern oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at mid-latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.


2004 ◽  
Vol 39 ◽  
pp. 409-416
Author(s):  
Jim Hedfors ◽  
Veijo Allan Pohjola

AbstractAs part of a long-term mass-balance program run by SWEDARP since 1988, a detailed study on Plogbreen, Dronning Maud Land, Antarctica, was undertaken during the austral summer of 2003 to investigate the long-term mass balance. We compare ice outflux, φout, through a cross-sectional gate with ice influx, φin, from the upstream catchment area. The φin is based on calculations of snow accumulation upstream of the gate using data available from published ice-core records. The φout is based on Glen’s flow law aided by thermodynamic modeling and force-budget calculations. Input data from the field consist of measurements of ice surface velocity and ice geometry. The ice surface velocity was measured using repeated differential global positioning system surveying of 40 stakes over a period of 25 days. The ice geometry was determined by 174 km of ground-penetrating radar profiling using ground-based 8MHz dipole antennas. This study presents the collected velocity and geometry data as well as the calculated ice flux of Plogbreen. The results show a negatively balanced system within the uncertainty limits; φout = 0.55 ± 0.05 km3 a–1 and φin = 0.4 ± 0.1 km3 a–1. We speculate that the negative balance can be explained by recent eustatic increase reducing resistive stresses and inducing accelerated flow.


2019 ◽  
Vol 11 (23) ◽  
pp. 2805 ◽  
Author(s):  
Yue Sui ◽  
Huadong Guo ◽  
Guang Liu ◽  
Yuanzhen Ren

The Antarctic and Arctic have always been critical areas of earth science research and are sensitive to global climate change. Global climate change exhibits diversity characteristics on both temporal and spatial scales. Since the Moon-based earth observation platform could provide large-scale, multi-angle, and long-term measurements complementary to the satellite-based Earth observation data, it is necessary to study the observation characteristics of this new platform. With deepening understanding of Moon-based observations, we have seen its good observation ability in the middle and low latitudes of the Earth’s surface, but for polar regions, we need to further study the observation characteristics of this platform. Based on the above objectives, we used the Moon-based Earth observation geometric model to quantify the geometric relationship between the Sun, Moon, and Earth. Assuming the sensor is at the center of the nearside of the Moon, the coverage characteristics of the earth feature points are counted. The observation intervals, access frequency, and the angle information of each point during 100 years were obtained, and the variation rule was analyzed. The research showed that the lunar platform could carry out ideal observations for the polar regions. For the North and South poles, a continuous observation duration of 14.5 days could be obtained, and as the latitude decreased, the duration time was reduced to less than one day at the latitude of 65° in each hemisphere. The dominant observation time of the North Pole is concentrated from mid-March to mid-September, and for the South Pole, it is the rest of the year, and as the latitude decreases, it extends outward from both sides. The annual coverage time and frequency will change with the relationship between the Moon and the Earth. This study also proves that the Moon-based observation has multi-angle observation advantages for the Arctic and the Antarctic areas, which can help better understand large-scale geoscientific phenomena. The above findings indicate that the Moon-based observation can be applied as a new type of remote sensing technology to the observation field of the Earth’s polar regions.


Science ◽  
2014 ◽  
Vol 346 (6214) ◽  
pp. 1227-1231 ◽  
Author(s):  
Sunke Schmidtko ◽  
Karen J. Heywood ◽  
Andrew F. Thompson ◽  
Shigeru Aoki

Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt.


Sign in / Sign up

Export Citation Format

Share Document