scholarly journals Desert dust transported over Europe: Lidar observations and model evaluation of the radiative impact

2015 ◽  
Vol 120 (7) ◽  
pp. 2881-2898 ◽  
Author(s):  
Giovanni Pitari ◽  
Glauco Di Genova ◽  
Eleonora Coppari ◽  
Natalia De Luca ◽  
Piero Di Carlo ◽  
...  
2015 ◽  
Vol 15 (6) ◽  
pp. 3463-3477 ◽  
Author(s):  
R. E. Mamouri ◽  
A. Ansmann

Abstract. A lidar method is presented that permits the estimation of height profiles of ice nuclei concentrations (INC) in desert dust layers. The polarization lidar technique is applied to separate dust and non-dust backscatter and extinction coefficients. The desert dust extinction coefficients σd are then converted to aerosol particle number concentrations APC280 which consider particles with radius > 280 nm only. By using profiles of APC280 and ambient temperature T along the laser beam, the profile of INC can be estimated within a factor of 3 by means of APC-T-INC parameterizations from the literature. The observed close relationship between σd at 500 nm and APC280 is of key importance for a successful INC retrieval. We studied this link by means of AERONET (Aerosol Robotic Network) sun/sky photometer observations at Morocco, Cabo Verde, Barbados, and Cyprus during desert dust outbreaks. The new INC retrieval method is applied to lidar observations of dust layers with the spaceborne lidar CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) during two overpasses over the EARLINET (European Aerosol Research Lidar Network) lidar site of the Cyprus University of Technology (CUT), Limassol (34.7° N, 33° E), Cyprus. The good agreement between the CALIOP and CUT lidar retrievals of σd, APC280, and INC profiles corroborates the potential of CALIOP to provide 3-D global desert dust APC280 and INC data sets.


2012 ◽  
Vol 2012 ◽  
pp. 1-36 ◽  
Author(s):  
L. Mona ◽  
Z. Liu ◽  
D. Müller ◽  
A. Omar ◽  
A. Papayannis ◽  
...  

We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including nonpractitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper.


2021 ◽  
Author(s):  
Moritz Haarig ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Holger Baars ◽  
Dietrich Althausen ◽  
...  

Abstract. Two Saharan dust layers observed over Leipzig in February and March 2021 were used to provide the first ever lidar measurements of the extinction coefficient at 1064 nm for desert dust. The advanced multiwavelength Raman polarization lidar was able to provide, for the first time, the lidar ratio (extinction-to-backscatter ratio) and particle linear depolarization ratio at all three classical lidar wavelengths (355, 532 and 1064 nm). The pure dust conditions during the first event exhibit lidar ratios of 47±8, 50±5 and 63±13 sr and particle linear depolarization ratios of 0.260±0.026, 0.298±0.017 and 0.214±0.025 at the wavelengths of 355, 532 and 1064 nm, respectively. The second, slightly polluted dust case shows a similar spectral behavior with values of the lidar ratio of 52±8, 47±5 and 61±10 sr and the depolarization ratio of 0.188±0.053, 0.270±0.017 and 0.242±0.007 at 355, 532 and 1064 nm, respectively. The results were compared to AERONET v3 inversions and GRASP retrievals at six and seven wavelengths, which could reproduce the spectral slope of the lidar ratio from 532 to 1064 nm. The spectral slope of the particle linear depolarization ratio could not be reproduced by the AERONET inversions, especially at 1064 nm.


2008 ◽  
Vol 8 (16) ◽  
pp. 5045-5060 ◽  
Author(s):  
Z. Liu ◽  
D. Liu ◽  
J. Huang ◽  
M. Vaughan ◽  
I. Uno ◽  
...  

Abstract. Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP) and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 11–12 km. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in Northwest India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar. Comparisons with the OMI and MODIS measurements show the unique capability of the CALIPSO lidar to provide unambiguous, altitude-resolved dust measurements.


2008 ◽  
Vol 8 (2) ◽  
pp. 5957-5977 ◽  
Author(s):  
◽  
M. Vaughan ◽  
C. Trepte ◽  
C. Hostetler ◽  
D. Winker ◽  
...  

Abstract. Airborne dust is a major environmental hazard in Asia. Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP) and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 10 km and higher. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in North India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar.


2020 ◽  
Author(s):  
Eduardo Landulfo ◽  
Alexandre Cacheffo ◽  
Alexandre Calzavara Yoshida ◽  
Antonio Arleques Gomes ◽  
Fábio Juliano da Silva Lopes ◽  
...  

In Part II of this chapter, we intend to show the significant advances and results concerning aerosols’ tropospheric monitoring in South America. The tropospheric lidar monitoring is also supported by the Latin American Lidar Network (LALINET). It is concerned about aerosols originating from urban pollution, biomass burning, desert dust, sea spray, and other primary sources. Cloud studies and their impact on radiative transfer using tropospheric lidar measurements are also presented.


Sign in / Sign up

Export Citation Format

Share Document