scholarly journals Lidar Measurements for Desert Dust Characterization: An Overview

2012 ◽  
Vol 2012 ◽  
pp. 1-36 ◽  
Author(s):  
L. Mona ◽  
Z. Liu ◽  
D. Müller ◽  
A. Omar ◽  
A. Papayannis ◽  
...  

We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including nonpractitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper.

2021 ◽  
Author(s):  
Moritz Haarig ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Holger Baars ◽  
Dietrich Althausen ◽  
...  

Abstract. Two Saharan dust layers observed over Leipzig in February and March 2021 were used to provide the first ever lidar measurements of the extinction coefficient at 1064 nm for desert dust. The advanced multiwavelength Raman polarization lidar was able to provide, for the first time, the lidar ratio (extinction-to-backscatter ratio) and particle linear depolarization ratio at all three classical lidar wavelengths (355, 532 and 1064 nm). The pure dust conditions during the first event exhibit lidar ratios of 47±8, 50±5 and 63±13 sr and particle linear depolarization ratios of 0.260±0.026, 0.298±0.017 and 0.214±0.025 at the wavelengths of 355, 532 and 1064 nm, respectively. The second, slightly polluted dust case shows a similar spectral behavior with values of the lidar ratio of 52±8, 47±5 and 61±10 sr and the depolarization ratio of 0.188±0.053, 0.270±0.017 and 0.242±0.007 at 355, 532 and 1064 nm, respectively. The results were compared to AERONET v3 inversions and GRASP retrievals at six and seven wavelengths, which could reproduce the spectral slope of the lidar ratio from 532 to 1064 nm. The spectral slope of the particle linear depolarization ratio could not be reproduced by the AERONET inversions, especially at 1064 nm.


2020 ◽  
Vol 237 ◽  
pp. 02021
Author(s):  
S. Bohlmann ◽  
X. Shang ◽  
E. Giannakaki ◽  
M. Filioglou ◽  
A. Saarto ◽  
...  

Pollen has various effects on human health and the environment. To understand phenomena behind atmospheric pollen transport and hence improve pollen forecasts, vertically resolved optical properties and geometrical characteristics of the pollen distribution need to be studied. Lidar measurements and especially the particle depolarization ratio have been found to be an excellent tool to track pollen grains. In this study we present first results of atmospheric pollen characterization based on a 11 days period of birch and spruce pollination events.


2017 ◽  
Vol 192 ◽  
pp. 374-382 ◽  
Author(s):  
Geoffrey Gregis ◽  
Sébastien Schaefer ◽  
Jean-Baptiste Sanchez ◽  
Vanessa Fierro ◽  
Franck Berger ◽  
...  

2020 ◽  
Author(s):  
Eduardo Landulfo ◽  
Alexandre Cacheffo ◽  
Alexandre Calzavara Yoshida ◽  
Antonio Arleques Gomes ◽  
Fábio Juliano da Silva Lopes ◽  
...  

In Part II of this chapter, we intend to show the significant advances and results concerning aerosols’ tropospheric monitoring in South America. The tropospheric lidar monitoring is also supported by the Latin American Lidar Network (LALINET). It is concerned about aerosols originating from urban pollution, biomass burning, desert dust, sea spray, and other primary sources. Cloud studies and their impact on radiative transfer using tropospheric lidar measurements are also presented.


1981 ◽  
Author(s):  
Birgitta Berglund ◽  
Ulf Berglund ◽  
Thomas Lindvall ◽  
Helene Nicander-Bredberg

2011 ◽  
Vol 6 (3) ◽  
pp. 63-72 ◽  
Author(s):  
Jarmila Rimbalová ◽  
Silvia Vilčeková ◽  
Adriana Eštoková

Sign in / Sign up

Export Citation Format

Share Document