scholarly journals Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect

2016 ◽  
Vol 30 (5) ◽  
pp. 753-766 ◽  
Author(s):  
James Z. Sippo ◽  
Damien T. Maher ◽  
Douglas R. Tait ◽  
Ceylena Holloway ◽  
Isaac R. Santos
2009 ◽  
Vol 43 (19) ◽  
pp. 7364-7369 ◽  
Author(s):  
Mats G. Öquist ◽  
Marcus Wallin ◽  
Jan Seibert ◽  
Kevin Bishop ◽  
Hjalmar Laudon

2013 ◽  
Vol 28 (4) ◽  
pp. 2082-2090 ◽  
Author(s):  
Junhua Yan ◽  
Wantong Wang ◽  
Chuanyan Zhou ◽  
Kun Li ◽  
Shijie Wang

2008 ◽  
Vol 12 (6) ◽  
pp. 1-16 ◽  
Author(s):  
Maria de Fátima F. L. Rasera ◽  
Maria Victoria R. Ballester ◽  
Alex V. Krusche ◽  
Cleber Salimon ◽  
Letícia A. Montebelo ◽  
...  

Abstract A recent estimate of CO2 outgassing from Amazonian wetlands suggests that an order of magnitude more CO2 leaves rivers through gas exchange with the atmosphere than is exported to the ocean as organic plus inorganic carbon. However, the contribution of smaller rivers is still poorly understood, mainly because of limitations in mapping their spatial extent. Considering that the largest extension of the Amazon River network is composed of small rivers, the authors’ objective was to elucidate their role in air–water CO2 exchange by developing a geographic information system (GIS)-based model to calculate the surface area covered by rivers with channels less than 100 m wide, combined with estimated CO2 outgassing rates at the Ji-Paraná River basin, in the western Amazon. Estimated CO2 outgassing was the main carbon export pathway for this river basin, totaling 289 Gg C yr−1, about 2.4 times the amount of carbon exported as dissolved inorganic carbon (121 Gg C yr−1) and 1.6 times the dissolved organic carbon export (185 Gg C yr−1). The relationships established here between drainage area and channel width provide a new model for determining small river surface area, allowing regional extrapolations of air–water gas exchange. Applying this model to the entire Amazon River network of channels less than 100 m wide (third to fifth order), the authors calculate that the surface area of small rivers is 0.3 ± 0.05 million km2, and it is potentially evading to the atmosphere 170 ± 42 Tg C yr−1 as CO2. Therefore, these ecosystems play an important role in the regional carbon balance.


2011 ◽  
Vol 8 (1) ◽  
pp. 1799-1825 ◽  
Author(s):  
W. J. Shin ◽  
G. S. Chung ◽  
D. Lee ◽  
K. S. Lee

Abstract. We investigated dissolved inorganic carbon (DIC) exchange associated with groundwater discharge and stream flow from two upstream catchments with distinct basement lithology (silicate vs. carbonate). The effects of catchment lithology were evident in the spring waters showing lower δ13CDIC and alkalinity (−16.2 ± 2.7‰ and 0.09 ± 0.03 meq L−1, respectively) in the silicate and higher values (−9.7 ± 1.5‰ and 2.0 ± 0.2 meq L−1) in the carbonate catchment. The streams exhibited relatively high δ13CDIC values, −6.9 ± 1.6‰ and −7.8 ± 1.5‰, in silicate and carbonate catchments, respectively, indicating CO2 degassing during groundwater discharge and stream flow. The catchment lithology affected the pattern of DIC export. The CO2 degassing from stream and groundwater could be responsible for 8–55% of the total DIC export in the silicate catchment, whereas the proportion is comparatively low (0.4–5.6%) in the carbonate catchment. We emphasize the importance of dynamic carbon exchange occurring at headwater regions and its variability with catchment lithology for a more reliable carbon budget in river systems.


2011 ◽  
Vol 15 (8) ◽  
pp. 2551-2560 ◽  
Author(s):  
W. J. Shin ◽  
G. S. Chung ◽  
D. Lee ◽  
K. S. Lee

Abstract. This work presents a study of the dissolved inorganic carbon (DIC) exchange associated with groundwater discharge and stream flow from two upstream catchments with distinct basement lithologies (silicate vs. carbonate). The effects of catchment lithology were evident in the spring waters showing lower δ13CDIC and alkalinity (−16.2 ± 2.7 ‰ and 0.09 ± 0.03 meq l−1, respectively) in the silicate and higher values (−9.7 ± 1.5 ‰ and 2.0 ± 0.2 meq l−1) in the carbonate catchment. The streams exhibited relatively high δ13CDIC, −6.9 ± 1.6 ‰ and −7.8 ± 1.5 ‰, in silicate and carbonate catchments, respectively, indicating CO2 degassing during groundwater discharge and stream flow. The catchment lithology affected the pattern of DIC export. The CO2 degassing from stream and groundwater could be responsible for 8–55 % of the total DIC export in the silicate catchment, whereas the proportion is comparatively low (0.4–5.6 %) in the carbonate catchment. Therefore, the dynamic carbon exchange occurring at headwater regions and its possible variability with catchment lithology need to be examined for a more reliable carbon budget in river systems.


2016 ◽  
Vol 13 (10) ◽  
pp. 3109-3129 ◽  
Author(s):  
James K. B. Bishop ◽  
Michael B. Fong ◽  
Todd J. Wood

Abstract. Biologically mediated particulate organic and inorganic carbon (POC and PIC) export from surface waters is the principal determinant of the vertical oceanic distribution of pH and dissolved inorganic carbon and thus sets the conditions for air–sea exchange of CO2; exported organic matter also provides the energy fueling communities in the mesopelagic zone. However, observations are temporally and spatially sparse. Here we report the first hourly-resolved optically quantified POC and PIC sedimentation rate time series from an autonomous Lagrangian Carbon Flux Explorer (CFE), which monitored particle flux using an imaging optical sedimentation recorder (OSR) at depths below 140 m in the Santa Cruz Basin, CA, in May 2012, and in January and March 2013. Highest POC vertical flux ( ∼  100–240 mmol C m−2 d−1) occurred in January, when most settling material was millimeter- to centimeter-sized aggregates but when surface biomass was low; fluxes were  ∼  18 and  ∼  6 mmol C m−2 d−1, respectively, in March and May, under high surface biomass conditions. An unexpected discovery was that January 2013 fluxes measured by CFE were 20 times higher than that measured by simultaneously deployed surface-tethered OSR; multiple lines of evidence indicate strong undersampling of aggregates larger than 1 mm in the latter case. Furthermore, the January 2013 CFE fluxes were about 10 times higher than observed during multiyear sediment trap observations in the nearby Santa Barbara and San Pedro basins. The strength of carbon export in biologically dynamic California coastal waters is likely underestimated by at least a factor of 3 and at times by a factor of 20.


Sign in / Sign up

Export Citation Format

Share Document