Insights into Southern Ocean carbon export from the δ13C of particles and dissolved inorganic carbon during the SOIREE iron release experiment

2001 ◽  
Vol 48 (11-12) ◽  
pp. 2655-2680 ◽  
Author(s):  
T.W Trull ◽  
L Armand
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gaojing Fan ◽  
Zhengbing Han ◽  
Wentao Ma ◽  
Shuangling Chen ◽  
Fei Chai ◽  
...  

2009 ◽  
Vol 43 (19) ◽  
pp. 7364-7369 ◽  
Author(s):  
Mats G. Öquist ◽  
Marcus Wallin ◽  
Jan Seibert ◽  
Kevin Bishop ◽  
Hjalmar Laudon

2019 ◽  
Vol 16 (13) ◽  
pp. 2661-2681 ◽  
Author(s):  
Yingxu Wu ◽  
Mathis P. Hain ◽  
Matthew P. Humphreys ◽  
Sue Hartman ◽  
Toby Tyrrell

Abstract. Previous work has not led to a clear understanding of the causes of spatial pattern in global surface ocean dissolved inorganic carbon (DIC), which generally increases polewards. Here, we revisit this question by investigating the drivers of observed latitudinal gradients in surface salinity-normalized DIC (nDIC) using the Global Ocean Data Analysis Project version 2 (GLODAPv2) database. We used the database to test three different hypotheses for the driver producing the observed increase in surface nDIC from low to high latitudes. These are (1) sea surface temperature, through its effect on the CO2 system equilibrium constants, (2) salinity-related total alkalinity (TA), and (3) high-latitude upwelling of DIC- and TA-rich deep waters. We find that temperature and upwelling are the two major drivers. TA effects generally oppose the observed gradient, except where higher values are introduced in upwelled waters. Temperature-driven effects explain the majority of the surface nDIC latitudinal gradient (182 of the 223 µmol kg−1 increase from the tropics to the high-latitude Southern Ocean). Upwelling, which has not previously been considered as a major driver, additionally drives a substantial latitudinal gradient. Its immediate impact, prior to any induced air–sea CO2 exchange, is to raise Southern Ocean nDIC by 220 µmol kg−1 above the average low-latitude value. However, this immediate effect is transitory. The long-term impact of upwelling (brought about by increasing TA), which would persist even if gas exchange were to return the surface ocean to the same CO2 as without upwelling, is to increase nDIC by 74 µmol kg−1 above the low-latitude average.


1995 ◽  
Vol 348 (1324) ◽  
pp. 211-219 ◽  

A model simulation of the global carbon cycle demonstrates that the biological and solubility pumps are of comparable importance in determining the spatial distribution of annual mean air-sea fluxes in the Atlantic. The model also confirms that the impact of the (steady state) biological pump on the magnitude and spatial distribution of anthropogenic CO 2 uptake is minimal. An Atlantic Ocean carbon budget developed from analysis of the model combined with observations suggests that the air-sea flux of carbon is inadequate to supply the postulated large dissolved inorganic carbon export from the Atlantic. Other sources of carbon are required, such as an input from the Pacific via the Bering Strait and Arctic, river inflow, or an import of dissolved organic carbon.


2013 ◽  
Vol 6 (2) ◽  
pp. 621-639
Author(s):  
U. Schuster ◽  
A. J. Watson ◽  
D. C. E. Bakker ◽  
A. M. de Boer ◽  
E. M. Jones ◽  
...  

Abstract. Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes the dissolved inorganic carbon and total alkalinity data collected along east-west sections at 55–60° N (Arctic Gateway), 24.5° N, and 24° S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, yet are not covered in this paper. Over 95% of samples taken during the 24.5° N, 24° S, and the Drake Passage sections were analysed onboard and subjected to a 1st level quality control addressing technical and analytical issues. Samples taken during Arctic Gateway were analysed and subjected to quality control back in the laboratory. Complete post-cruise 2nd level quality control was performed using cross-over analysis with historical data in the vicinity of measurements, and data are available through the Carbon Dioxide Information Analysis Center (CDIAC) and are included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2).


2013 ◽  
Vol 28 (4) ◽  
pp. 2082-2090 ◽  
Author(s):  
Junhua Yan ◽  
Wantong Wang ◽  
Chuanyan Zhou ◽  
Kun Li ◽  
Shijie Wang

Sign in / Sign up

Export Citation Format

Share Document