Estimation of human‐induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Y angtze R iver basin

2015 ◽  
Vol 51 (10) ◽  
pp. 8494-8516 ◽  
Author(s):  
Ying Huang ◽  
Mhd. Suhyb Salama ◽  
Maarten S. Krol ◽  
Zhongbo Su ◽  
Arjen Y. Hoekstra ◽  
...  
2011 ◽  
Vol 15 (2) ◽  
pp. 533-546 ◽  
Author(s):  
M. Becker ◽  
B. Meyssignac ◽  
L. Xavier ◽  
A. Cazenave ◽  
R. Alkama ◽  
...  

Abstract. Terrestrial water storage (TWS) composed of surface waters, soil moisture, groundwater and snow where appropriate, is a key element of global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) space gravimetry mission provides a new tool to measure large-scale TWS variations. However, for the past few decades, direct estimate of TWS variability is accessible from hydrological modeling only. Here we propose a novel approach that combines GRACE-based TWS spatial patterns with multi-decadal-long in situ river level records, to reconstruct past 2-D TWS over a river basin. Results are presented for the Amazon Basin for the period 1980–2008, focusing on the interannual time scale. Results are compared with past TWS estimated by the global hydrological model ISBA-TRIP. Correlations between reconstructed past interannual TWS variability and known climate forcing modes over the region (e.g., El Niño-Southern Oscillation and Pacific Decadal Oscillation) are also estimated. This method offers new perspective for improving our knowledge of past interannual TWS in world river basins where natural climate variability (as opposed to direct anthropogenic forcing) drives TWS variations.


2016 ◽  
Vol 25 (6) ◽  
pp. 685-694 ◽  
Author(s):  
Liangjing Zhang ◽  
Henryk Dobslaw ◽  
Christoph Dahle ◽  
Ingo Sasgen ◽  
Maik Thomas

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4144 ◽  
Author(s):  
Li ◽  
Wang ◽  
Zhang ◽  
Wen ◽  
Zhong ◽  
...  

The terrestrial water storage anomaly (TWSA) gap between the Gravity Recovery and Climate Experiment (GRACE) and its follow-on mission (GRACE-FO) is now a significant issue for scientific research in high-resolution time-variable gravity fields. This paper proposes the use of singular spectrum analysis (SSA) to predict the TWSA derived from GRACE. We designed a case study in six regions in China (North China Plain (NCP), Southwest China (SWC), Three-River Headwaters Region (TRHR), Tianshan Mountains Region (TSMR), Heihe River Basin (HRB), and Lishui and Wenzhou area (LSWZ)) using GRACE RL06 data from January 2003 to August 2016 for inversion, which were compared with Center for Space Research (CSR), Helmholtz-Centre Potsdam-German Research Centre for Geosciences (GFZ), Jet Propulsion Laboratory (JPL)’s Mascon (Mass Concentration) RL05, and JPL’s Mascon RL06. We evaluated the accuracy of SSA prediction on different temporal scales based on the correlation coefficient (R), Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE), which were compared with that of an auto-regressive and moving average (ARMA) model. The TWSA from September 2016 to May 2019 were predicted using SSA, which was verified using Mascon RL06, the Global Land Data Assimilation System model, and GRACE-FO results. The results show that: (1) TWSA derived from GRACE agreed well with Mascon in most regions, with the highest consistency with Mascon RL06 and (2) prediction accuracy of GRACE in TRHR and SWC was higher. SSA reconstruction improved R, NSE, and RMSE compared with those of ARMA. The R values for predicting TWS in the six regions using the SSA method were 0.34–0.98, which was better than those for ARMA (0.26–0.97), and the RMSE values were 0.03–5.55 cm, which were better than the 2.29–5.11 cm RMSE for ARMA as a whole. (3) The SSA method produced better predictions for obvious periodic and trending characteristics in the TWSA in most regions, whereas the detailed signal could not be effectively predicted. (4) The predicted TWSA from September 2016 to May 2019 were basically consistent with Global Land Data Assimilation System (GLDAS) results, and the predicted TWSA during June 2018 to May 2019 agreed well with GRACE-FO results. The research method in this paper provides a reference for bridging the gap in the TWSA between GRACE and GRACE-FO.


2017 ◽  
Vol 21 (2) ◽  
pp. 821-837 ◽  
Author(s):  
Liangjing Zhang ◽  
Henryk Dobslaw ◽  
Tobias Stacke ◽  
Andreas Güntner ◽  
Robert Dill ◽  
...  

Abstract. Estimates of terrestrial water storage (TWS) variations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to assess the accuracy of four global numerical model realizations that simulate the continental branch of the global water cycle. Based on four different validation metrics, we demonstrate that for the 31 largest discharge basins worldwide all model runs agree with the observations to a very limited degree only, together with large spreads among the models themselves. Since we apply a common atmospheric forcing data set to all hydrological models considered, we conclude that those discrepancies are not entirely related to uncertainties in meteorologic input, but instead to the model structure and parametrization, and in particular to the representation of individual storage components with different spatial characteristics in each of the models. TWS as monitored by the GRACE mission is therefore a valuable validation data set for global numerical simulations of the terrestrial water storage since it is sensitive to very different model physics in individual basins, which offers helpful insight to modellers for the future improvement of large-scale numerical models of the global terrestrial water cycle.


2017 ◽  
Vol 44 (9) ◽  
pp. 4107-4115 ◽  
Author(s):  
Manuela Girotto ◽  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle ◽  
Matthew Rodell ◽  
Clara Draper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document